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Abstract: In this article the use of optimizations and surrogate models for the propagation of
mixed aleatory/epistemic uncertainties in a robust optimization problem is demonstrated. Speci�-
cally, this work focuses on strategies applicable for models where input parameters can be divided
into a set of variables containing only aleatory uncertainties and a set with only epistemic uncer-
tainties. With the input parameters divided in this way, uncertainty due to the epistemic variables
is propagated via a constrained optimization approach, while the uncertainty due to aleatory
variables is propagated via sampling. A statistics-of-intervals approach is proposed in which the
constrained optimization results are treated as a random variable and multiple optimizations are
performed to quantify the aleatory uncertainty. In order to reduce the total number of optimiza-
tions required, a Kriging surrogate is employed to model the variation of the optimization results
with respect to the aleatory variables, and exhaustive sampling is performed on this surrogate to
determine the desired statistics for each robust optimization iteration. This approach makes robust
optimization under mixed aleatory/epistemic uncertainty possible while at the same time keeping
the computational cost for these types of problems manageable.
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1 Introduction and Motivation

Many real-world problems involve input data that is noisy or uncertain, due to measurement or modeling
errors, approximate modeling parameters [1], manufacturing tolerances [2], in-service wear-and-tear, or sim-
ply the unavailability of information at the time of the decision [3]. These imprecise or unknown inputs
are important in the design process and need to be quanti�ed in some fashion. To this end, uncertainty
quanti�cation (UQ) has emerged as an important area in modern computational engineering. Today, it is
no longer su�cient to predict speci�c objectives using a particular physical model with deterministic inputs.
Rather, a probability distribution function (PDF) or interval bound of the simulation objectives is required
depending on whether aleatory or epistemic uncertainties are involved [4]. Uncertainty characterized by
inherent randomness is called aleatory uncertainty (or type A, or irreducible uncertainty). In contrast, epis-
temic uncertainty (or type B, or reducible uncertainty) represents a lack of knowledge about the appropriate
value to use for a quantity [5]. Epistemic uncertainty may or may not be modeled probabilistically and
regulatory agencies and design teams are increasingly being asked to speci�cally characterize and quantify
epistemic uncertainty and separate its e�ect from that of aleatory uncertainty [6].

Deterministic optimization tools are also widely used in engineering practice, however, engineering designs
do not operate exactly at their design point due to physical variability in the environment. These small
variations can deteriorate the performance of deterministically optimized designs. It is, therefore, necessary
to account for these uncertainties in the optimization process using optimization under uncertainty (OUU)
techniques, which implies that UQ is used in the optimization loop instead of a deterministic simulation.
While there are some post-optimality criteria that provide insight into the sensitivity of an optimal design to
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parameter perturbations (for example, gradients and Hessians), these criteria only provide a local measure
of sensitivity at the optimal design point. In many engineering system design applications, broader measures
of objective and constraint function sensitivity are often needed. Statistical measures, such as mean value,
standard deviation, and probability of failure can provide such information. Thus, it is a natural extension
for engineers to incorporate statistical measures directly into the design optimization process. Beginning
with the seminal works of Beale [7], Dantzig [8], and Tintner [9], OUU has experienced rapid development
in both theory and algorithms. Dantzig considers planning under uncertainty as one of the most important
open problems in optimization [10, 11]. Good overviews of the state of the art in the �eld of OUU are
provided by Beyera et al. [12], Sahinidis [10], Giunta et al. [13] and Li [14].

An important sub�eld in OUU is robust optimization (RO) [15, 16] which can be divided into robust
design based methods and reliability-based methods [17]. Robust design improves the quality of a product
by minimizing the e�ect of the causes of variation without eliminating these causes. The objective here is to
optimize the mean performance and minimize its variation, while maintaining feasibility with probabilistic
constraints; hence robust design concentrates on the probability distribution near the mean values. The
ability to identify and catalog overly conservative design margins resulting from applying safety factors
on top of other safety factors, for example, is an important application for robust design, which is being
increasingly viewed as an enabling technology for design of aerospace, civil, and automotive structures subject
to uncertainty [18, 19, 20, 21, 22]. The reliability-based methods, on the other hand, are predominantly used
for risk analysis by computing the probability of failure of a system. Thus, reliability approaches concentrate
on the rare events at the tails of the probability distribution.

A mixed aleatory/epistemic UQ typically relies on a nested sampling strategy (or second-order proba-
bility). Although the required number of samples grows extremely fast, these strategies are conceptually
easy to understand and are capable of separating the e�ects of each type of uncertainty [23, 24]. For nested
strategies, samples are �rst drawn from the epistemic variables; and for each set of epistemic variables, the
distribution of the output due to the aleatory variables is determined using sampling of the aleatory vari-
ables. The simplest approach for this is the Monte-Carlo (MC) method [25] for which a large number of
independent calculations need to be computed. The number of samples required for the epistemic uncertainty
grows exponentially fast with the number of epistemic variables [23], which rapidly results in prohibitively
high computational cost, especially for complex high-�delity physics-based simulations. To alleviate some
of the cost, surrogates can be created as a function of all variables and samples extracted according to
a nested strategy. For relatively low dimensions, this strategy can be e�ective and, when combined with
gradient-enhancement, could be applied to problems of moderate dimension [26]. However, once the num-
ber of epistemic variables increases su�ciently, surrogate-based approaches will again become prohibitively
expensive as the required number of training points increases exponentially fast for an accurate surrogate
model known as �curse of dimensionality�. In order to address this concern, combinations of sampling and
optimization approaches have been explored [24, 27]. The idea is that for mixed aleatory/epistemic problems,
the goal of the uncertainty quanti�cation is to produce a region in which the function is contained with a
speci�c level of con�dence, known as a P-Box [23]. The bounds of the con�dence interval of the output
distribution must itself be an interval in order to account for the epistemic uncertainties. Because only the
bounds of this box are required, the sampling with respect to the epistemic variables can be replaced by one
maximization and one minimization problem.

In principle, these mixed sampling/optimization approaches may be posed in two ways: determining
intervals of statistics and determining statistics of intervals. The �rst approach can be viewed as an opti-
mization under uncertainty problem with the metric of the optimization de�ned as a relevant statistic of
the aleatory distribution, such as the mean and variance, bounds on a con�dence interval, or a reliability
index [28, 24]. For each step in the optimization, the aleatory uncertainty is quanti�ed, and the relevant
statistic of the distribution is calculated and used as the objective function for the optimization. In the
statistics-of-interval approach, on the other hand, an optimization problem can be posed for each set of
aleatory variables, and repeated optimization evaluations can be used to determine the relevant statistics
of the interval [27]. Using adjoint capabilities [29, 30] gradient-based optimization methods can be used,
assuming that the global extrema in the epistemic design space can be found this way, reducing the cost of
each optimization and ensuring very good scaling as the number of epistemic variables increases. To reduce
the number of required optimizations for low statistical errors, a surrogate model of the optimization results
can be constructed with respect to the aleatory variables which can then be sampled exhaustively, ensuring
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that fewer optimizations are required to characterize the statistics of the interval accurately.
The outline of this paper is as follows. Section 2 describes the employed OUU approach for mixed

aleatory/epistemic uncertainties in detail. Application results of the presented approach are given in Section 3
and Section 4 concludes this paper.

2 Optimization Under UncertaintyWith Mixed Aleatory/Epistemic
Uncertainty

A conventional constrained optimization problem for an objective function, J , that is a function of input
variables, D, state variables, q(D), and simulation outputs, f(D) = F (q(D), D), can be written as

min
D

J = J(f, q,D)

s.t. 0 = R(q,D) (1)

0 ≤ g(f, q,D).

Here, the state equation residuals, R, are expressed as an equality constraint, and other system constraints,
g, are represented as inequality constraints. In the case where the input variables are precisely known, all
functions of D are deterministic. However, given uncertainties in D all functions in equation (1) can no
longer be treated deterministically.

For this work, the design variables are assumed to have only aleatory or only epistemic uncertainty. Let α
represent the variables associated with aleatory uncertainties and β represent variables with epistemic uncer-
tainties. The design variables D = (Dα, Dβ) are considered to be either the mean values of aleatory uncer-
tainties which are assumed to be statistically independent and normally distributed with α ∼ N (Dα, σ

2
D), or

the midpoint of bounds on epistemic uncertainties with β ∈ I(D) where I(D) = [Dβ − sD, Dβ + sD]. These
are reasonable and realistic assumptions for geometric shape variables subject to manufacturing tolerances,
or for input �ow conditions subject to random �uctuations, or other such input variables. One could also
derive equations for correlated and/or non-normally distributed aleatory variables; however, the analysis and
resulting equations become more complex [31] and are beyond the scope of this paper.

In order to account for both types of uncertainty, sampling is performed for the aleatory variables while
optimization is performed over the epistemic variables as described in the introduction. Let f(D) = f(α, β)
represent the output of interest of a simulation then the optimization can be represented mathematically as
follows

fmax(α) = max
β∈I(D)

f(α, β) (2)

fmin(α) = min
β∈I(D)

f(α, β). (3)

The functional outputs fmax and fmin can now be treated as random variables, since the inputs α are random
variables with associated distributions. In the remainder of this paper the subscript ext (for extrema) will be
used as a placeholder for either max or min. To characterize the probability distribution of fext, one must
extract repeated samples of fext according to the underlying PDF of α. Each sampling entails solving the
appropriate optimization problem, equation (2) or (3), for the speci�ed sample of α. For these optimizations
an L-BFGS [32, 33] algorithm that can utilize function and gradient information is used in this work, thereby
reducing the cost of each optimization and ensuring excellent scaling in the number of variables with epistemic
uncertainties.

Nonetheless, because of the expense of these optimizations, strategies to reduce the number of samples
and thus the computational cost associated with sampling must be employed. For this work, a surrogate is
created for fext as a function of the aleatory variables, which enables the extraction of a large number of
samples in order to obtain accurate statistics for very low computational cost. Because the number of aleatory
variables used here is relatively small, the required number of training points for an accurate surrogate is
small, necessitating only a small amount of optimizations. Because the optimization results are viewed as
general random variables, any surrogate can be used to represent the aleatory dependence of the variables. A
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Kriging surrogate model is employed in this work. The details of the construction of this particular Kriging
model, which can utilize gradient and Hessian information and employs a dynamic training point selection, is
described in previously published papers [34, 35, 36, 37, 38]. The center of the Kriging domain is prescribed
by the mean value of α, Dα, and the boundary is taken to be two standard deviations σD away in all aleatory
input dimensions. This implies that for the normally distributed input variables α more than 97 % of all
MC samples fall within the Kriging domain and the less accurate extrapolation capabilities of the Kriging
surrogate model only need to be used for a small fraction of the samples. Since the purpose of this article
is a robust optimization and not the accurate prediction of the tail statistics this approach leads to very
reasonable results as demonstrated in Section 3.

The deterministic optimization problem (1) can now be rewritten. The objective function can be written
in terms of mean values of the functional outputs, f̄ext, and typically also becomes a function of the variances,
Varfext , for example, for robust design optimizations objective functions are typically of the form given by
equation (5). The state equation residual equality constraint, R, needs to be satis�ed for all values of α and
β. The inequality constraints can be cast into a probabilistic statement such that the probability that the
constraints are satis�ed is greater than or equal to a desired or speci�ed probability, Pk. This statement can
be transformed [39] into a constraint involving mean values and standard deviations (also called moment
matching formulation [40]) and the entire OUU problem can be expressed as [31, 41]

min
α,β

J = J (f̄ext,Varfext , q, α, β)

s.t. 0 = R(q, α, β) (4)

0 ≤ g(f̄ext, q, α, β)− kσg,

where k is the number of standard deviations, σg, that the constraint g must be displaced in order to achieve
Pk. A simple way to de�ne an objective function for robust design optimization problems is to linearly
combine the mean and variance of the simulation output using some user speci�ed weights wi

J = w1f̄ext + w2 Varfext . (5)

One could even treat this as a multi-objective optimization problem [42, 43, 44] and use well-known techniques
to determine the Pareto frontier of this robust design optimization problem.

The software package Ipopt (Interior Point OPTimizer) [45] for large-scale nonlinear optimization with
constraints is used for the solution of the OUU problem given by equation (4). This package also allows
users to impose bound constraints on the design variables. The required gradient information is obtained
as follows. The gradient of the objective function, J , given by equation (5) with respect to design variables
associated with aleatory uncertainties is given by

dJ
dDα

=
∂J
∂f̄ext

df̄ext
dDα

+
∂J

∂Varfext

dVarfext
dDα

(6)

where it is straightforward to calculate ∂J
∂f̄ext

and ∂J
∂Varfext

. A Kriging surrogate is built to calculate f̄ext
and Varfext using N training points for each of which one has to calculate fext by solving an optimization

problem as given by equation (2) or (3). This Kriging surrogate is then sampled extensively Ñ times for
inputs αk, k = 1, . . . , Ñ chosen based on their underlying probability distribution function [in this case

α ∼ Dα + σDZ with Z ∼ N (0, 1)] with the Kriging predictions represented by f̂ext(αk). The mean of the
simulation output can then be approximated by

f̄ext ≈
1
Ñ

Ñ∑
k=1

f̂ext(αk) (7)

and the derivative can be approximated at the same time with little computational overhead via [46]

df̄ext
dDα

≈ 1
Ñ

Ñ∑
k=1

df̂ext(αk)
dαk

dαk

dDα
=

1
Ñ

Ñ∑
k=1

df̂ext(αk)
dαk

, (8)
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where it is straightforward to calculate df̂ext(α
k)

dαk
from the Kriging surrogate model [47, 46]. Similarly, the

variance and its derivative can be approximated as

Varfext ≈

 1
Ñ

Ñ∑
k=1

f̂2
ext(α

k)

− f̄2
ext (9)

dVarfext
dDα

≈

 2
Ñ

Ñ∑
k=1

f̂ext(αk)
df̂ext(αk)
dαk

− 2f̄ext
df̄ext
dDα

. (10)

The gradient of the objective function, J , with respect to design variables associated with epistemic
uncertainties is also given by equation (6) if Dα is replaced with Dβ . However, it is not trivial to calculate
df̄ext
dDβ

and
dVarfext
dDβ

whereDβ represents midpoints of epistemic uncertainty intervals since moving the midpoint

will lead, in general, to di�erent extrema for the training points and thus to a di�erent Kriging surrogate
which when sampled leads to di�erent values of f̄ext and Varfext . In contrast, the aleatory gradient was easy
to obtain since one only has to take into account how the sample points change while being able to reuse
the same Kriging surrogate. The approach for now is to use the approximations

df̄ext
dDβ

≈ dfext
dDβ

∣∣∣∣
Dα

dVarfext
dDβ

≈ 0 (11)

that is the derivative of fext with respect to Dβ at the mean values of the aleatory uncertainty variables α.
This derivative is, in general, non-zero since for the epistemic optimizations the extreme value is typically
encountered on the interval bound. The variances for the problems studied in this paper are much smaller

than the mean values which allows the neglection of
dVarfext
dDβ

. The following section will demonstrate that

the presented approach can lead to successful robust optimizations.

3 Robust Optimization of a Transonic Airfoil

The steady inviscid �ow over a transonic NACA 0012 airfoil is considered as a �ow example which is described
in more detail in Mani and Mavriplis [48, 49]. The computational mesh has about 20, 000 triangular elements.
The non-dimensionalized pressure contours for an angle of attack of 1.25 degrees and a free-stream Mach
number of 0.755 are shown in Figure 1 leading to a lift and drag coe�cient of Cl = 0.268 and Cd = 0.00521,
respectively.
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Figure 1: Non-dimensionalized pressure contours and mesh for angle of attack of 1.25 degrees and a free-
stream Mach number of 0.755.
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In order to perform a robust lift-constrained drag minimization under mixed aleatory/epistemic un-
certainty one shape design variable on the upper surface and one on the lower surface which control the
magnitude of Hicks-Henne sine bump functions [50] are allowed to vary. The resulting deformation of the
mesh is calculated via a linear tension spring analogy [51, 48]. Both shape design variables are assumed
to have epistemic uncertainties due to manufacturing tolerances. A zero value corresponds to the original
NACA 0012 airfoil and sDu,l is taken to be 0.005. Figure 2 shows the original NACA 0012 airfoil and the
airfoils resulting from design variable values of ±0.005. The angle of attack and free-stream Mach number
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Figure 2: NACA 0012 airfoil (black) and airfoils resulting from design variable values of ±0.005 (gray).

are assumed to have aleatory uncertainties which are both modeled with normal distributions. The mean
values are given by the design variable values, DAoA and DM , and the standard deviations are prescribed as
σDAoA = 0.1 and σDM = 0.01, respectively. A robust optimization problem as given by equation (4) can be
posed by using

J := C̄dmax + σ2
Cdmax

(12)

as objective function and
g := C̄lmin − C∗l σg := σClmin (13)

as inequality constraint to maintain a target lift coe�cient of C∗l = 0.6. Box constraints on all four design
variables are used to prevent the generation of invalid geometries from the mesh movement algorithm and
solver robustness issues. They are chosen as follows:

Du,l ∈ [−0.025, 0.025] DAoA ∈ [0, 1.85] DM ∈ [0.6, 0.78] (14)

Because of the expense of the CFD simulation, the exact mixed aleatory/epistemic uncertainty results
can not easily be calculated through either nested sampling or exhaustive sampling of optimization results.
In order to provide validation for the OUU framework with mixed aleatory/epistemic uncertainty the uncer-
tainty propagations of aleatory and epistemic variables are validated separately against exhaustive sampling.
First, optimization is used to propagate the epistemic uncertainties within the problem. For this test, the
aleatory variables are �xed at their mean value taken to be DAoA = 1.25 and DM = 0.755, and optimization
is performed over the epistemic variables Du = Dl = 0 to determine the associated intervals for the output
functions of interest. The interval produced through optimization is validated by performing Latin hyper-
cube sampling (with 500 samples plus the corners of the domain) over the epistemic variables, again with
the aleatory variables �xed at their mean values. The excellent agreement can be seen in Table 1. Note that
the optimizations only took a few function and gradient evaluation each.

Table 1: Validation of epistemic uncertainty propagation.

Method Clmin Clmax Cdmin Cdmax
Optimization 0.195 0.344 3.56 · 10−3 6.90 · 10−3

LHS Sampling 0.195 0.344 3.56 · 10−3 6.90 · 10−3

With the optimization portion of the method validated, the ability of the Kriging surrogate model to
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capture the aleatory variation of the output functions of interest is tested next. For this test, the original
NACA 0012 airfoil is used (i.e. no epistemic uncertainty), and sampling from Kriging surrogates (build from a
varying number of training points, N) is performed over the aleatory variablesDAoA = 1.25 andDM = 0.755,
respectively. In order to provide validation data, full non-linear MC (NLMC) sampling is performed over
the aleatory variables, and both distributions are characterized by calculating statistics of interest using the
same samples. For a reasonable trade-o� between acquiring accurate statistics and computational cost for
the NLMC, 3, 000 samples are used. Because the epistemic variables for this test are �xed, each training
point for the Kriging or sample point for the NLMC requires only a single CFD simulation. A summary of
these comparisons can be found in Table 2.

Table 2: Comparison of NLMC and Kriging aleatory uncertainty propagation.

Method C̄l σCl C̄d σ2
Cd

NLMC (Ñ = 3000) 0.269 2.3 · 10−2 5.54 · 10−3 6.1 · 10−6

Kriging (N = 5) 0.270 2.2 · 10−2 5.65 · 10−3 7.5 · 10−6

Kriging (N = 13) 0.269 2.4 · 10−2 5.53 · 10−3 6.1 · 10−6

Kriging (N = 19) 0.269 2.3 · 10−2 5.54 · 10−3 6.1 · 10−6

The Kriging model constructed from thirteen training points yields reasonable results for a fraction of
the cost of a full NLMC simulation. Thus, all the required Kriging response surfaces for the actual robust
optimization runs are constructed from thirteen training points and the sampling is performed using Ñ = 105

latin hypercube samples to keep the statistical error small. Lastly, in Table 3 a comparison of NLMC and
Kriging predictions is presented using the same 3, 000 samples of optimization results for the initial airfoil
and �ow conditions (Du = Dl = 0, DAoA = 1.25 and DM = 0.755) which demonstrates the good quality of
the predictions of the proposed approach for statistics of the lift and drag coe�cients.

Table 3: Comparison of NLMC and Kriging predictions for the initial guess.

C̄lmin σClmin C̄dmax σ2
Cdmax

NLMC (3000 optimizations) 0.195 2.1 · 10−2 7.22 · 10−3 7.9 · 10−6

Kriging (13 optimizations) 0.195 2.1 · 10−2 7.22 · 10−3 7.9 · 10−6

Using the presented framework for the entire robust optimization gives the results presented in Table 4.
The number of required optimization iterations for convergence (norm of gradient less than 10−4) varies
between 12 to 22 for all the presented cases.

Table 4: Robust optimization results with two shape design variables.

k Pk C̄dmax σ2
Cdmax

C̄lmin σClmin Du Dl DAoA DM

0 0.5000 7.94 · 10−3 8.1 · 10−6 0.600 3.1 · 10−2 2.50 · 10−2 2.43 · 10−2 1.85 0.711
1 0.8413 9.95 · 10−3 1.1 · 10−5 0.631 3.4 · 10−2 2.50 · 10−2 2.28 · 10−2 1.85 0.730
2 0.9772 1.36 · 10−2 1.0 · 10−5 0.657 2.3 · 10−2 2.49 · 10−2 2.40 · 10−2 1.84 0.736
Deterministic 1.36 · 10−3 - 0.600 - 1.76 · 10−2 2.06 · 10−2 1.58 0.734

One can see that the average drag increases as the desired probability, Pk, of maintaining the target
lift coe�cient of C∗l = 0.6 is increased. The principal mechanism of achieving this higher probability is
to increase the mean Mach number. Note that a deterministic lift-constrained drag minimization yields a
minimal drag of Cd = 1.36 · 10−3 at a Mach number of 0.734 and a lower angle of attack of 1.58 degrees.
In Table 5 a comparison of NLMC and Kriging predictions using the same 3, 000 samples for the optimal
design with k = 1 is presented which demonstrates the quality of the predictions for statistics of the lift and
drag coe�cients.

The original NACA 0012, the deterministically and robustly (k = 2) optimized airfoils are all shown in
Figure 3. One can see that the robustly optimized airfoil looks di�erent from the deterministically optimized
one especially along the lower surface.
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Table 5: Comparison of NLMC and Kriging predictions for the optimal design obtained for k = 1.
C̄dmax σ2

Cdmax
C̄lmin σClmin

NLMC (3000 optimizations) 9.95 · 10−3 1.0 · 10−5 0.636 4.0 · 10−2

Kriging (13 optimizations) (Ñ = 3000) 1.02 · 10−2 4.9 · 10−6 0.634 3.3 · 10−2

Kriging (13 optimizations) (Ñ = 105) 9.95 · 10−3 1.1 · 10−5 0.631 3.4 · 10−2
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Figure 3: The original NACA 0012 at α = 1.25 (gray) as well as the deterministically (black), and robustly
(k = 2, red) optimized airfoils.

In order to demonstrate the scalability of the framework the number of epistemic design variables is
increased from two to six. Therefore, three shape design variables are placed on the upper surface and three
on the lower surface (at 40%, 60%, and 80% chord) and Figure 4 shows the original NACA 0012 airfoil and
the airfoils resulting from perturbations of all six shape design variables of ±0.005. The box constraints to
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Figure 4: The NACA 0012 airfoil (in black) and airfoils resulting from perturbations of ±0.005 (in gray).

prevent invalid meshes and �ow convergence issues are as follows:

D1,6 ∈ [−0.01, 0.01] D2−5 ∈ [−0.02, 0.02] DAoA ∈ [0, 1.85] DM ∈ [0.6, 0.78] (15)

where D1,6 are the shape design variables closest to the trailing edge on the lower and upper surface,
respectively. The robust optimization results are presented in Table 6. The number of required optimization
iterations for convergence (again norm of gradient less than 10−4) varies between 9 to 27 for all the presented
cases. Again, the average drag and mean Mach number increase as the desired probability, Pk, of maintaining
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Table 6: Robust optimization results with six shape design variables.

k Pk C̄dmax σ2
Cdmax

C̄lmin σClmin DAoA DM

0 0.5000 2.75 · 10−3 2.0 · 10−8 0.600 1.8 · 10−2 1.75 0.600
1 0.8413 2.87 · 10−3 2.3 · 10−8 0.618 1.8 · 10−2 1.85 0.602
2 0.9772 3.28 · 10−3 2.0 · 10−7 0.640 2.0 · 10−2 1.85 0.623
3 0.9986 5.60 · 10−3 5.5 · 10−6 0.666 2.2 · 10−2 1.85 0.645
Deterministic 1.21 · 10−3 - 0.600 - 1.85 0.600

the target lift coe�cient is increased.
In Table 7 a comparison of NLMC and Kriging predictions using the same 3, 000 samples for the optimal

design with k = 2 is presented which demonstrates the quality of the predictions for statistics of the lift and
drag coe�cients.

Table 7: Comparison of NLMC and Kriging predictions for the optimal design with six shape design variables.

C̄dmax σ2
Cdmax

C̄lmin σClmin
NLMC (3000 optimizations) 3.33 · 10−3 2.3 · 10−7 0.640 2.0 · 10−2

Kriging (13 optimizations) (Ñ = 3000) 3.33 · 10−3 1.8 · 10−7 0.640 2.0 · 10−2

Kriging (13 optimizations) (Ñ = 105) 3.28 · 10−3 2.0 · 10−7 0.640 2.0 · 10−2

The original NACA 0012 as well as the deterministically and robustly (k = 2) optimized airfoils are all
shown in Figure 5. Once again one can see that the robustly optimized airfoil looks di�erent from the
deterministically optimized one this time especially along the upper surface.
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Figure 5: The original NACA 0012 at α = 1.25 (gray) as well as the deterministically (black), and robustly
(k = 2, red) optimized airfoils.

4 Conclusions

This article describes the use of gradient-based optimizations and Kriging surrogate models for the prop-
agation of mixed aleatory/epistemic uncertainties for a robust lift-constrained drag minimization problem.
Uncertainty due to epistemic variables is propagated via a constrained optimization approach, while the un-
certainty due to aleatory variables is propagated via sampling of a Kriging surrogate model. This statistics-
of-intervals approach makes robust optimization under mixed aleatory/epistemic uncertainty possible while
at the same time keeping the computational cost for these types of problems manageable.
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