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Abstract: A novel computational methodology, termed “Irregularly Portioned La-
grangian Monte Carlo-Finite Difference” (IPLMCFD) is developed for large eddy sim-
ulation (LES) of turbulent flows. This methodology is intended for use in the filtered
density function (FDF) formulation and is particularly suitable for simulation of chem-
ically reacting flows on massively parallel platforms. The IPLMCFD facilitates efficient
simulations, and thus allows reliable prediction of complex turbulent flames. It allows for
tremendous improvements in scalability, and is the key enabler of petascale computations.
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1 Introduction

Within the past decade, there has been significant progress in large scale simulation (LES) of turbu-
lent combustion [1,2]. The primary challenge in large eddy simulation (LES) is accurate modeling
of the subgrid scale (SGS) quantities [1–8]. The filtered density function (FDF) methodology;
including its mass weighted form, the filtered mass density function (FMDF), has proven partic-
ularly effective for this purpose [9, 10]. The FDF is essentially the counterpart of the probability
density function (PDF) methods in Reynolds averaged simulations, commonly referred to as the
Reynolds-averaged Navier-Stokes (RANS) [5, 8, 11].

The most sophisticated FDF closure available to-date is our frequency-velocity-scalar FMDF
(FVS-FMDF) [12], and a simpler version (VS-FMDF) which does not include the frequency [13,14].
Hydrodynamic closure in incompressible, non-reacting flows has been successfully achieved via the
velocity-FDF (V-FDF) [15], and the one which has been utilized by most other investigators only
considers the scalar field (S-FDF and S-FMDF). This is the most elementary form of FDF when
we first introduced it [16,17]. The first LES of a hydrocarbon flame, namely the Sandia-Darmstadt
piloted diffusion flame [18, 19] were conducted via both S-FMDF [20] and VS-FMDF [21,22]. The
FDF has also been successful in predicting the more complex field of several other turbulent flames
[23–25].

The original work of Colucci et al. [16] provides the first demonstration of a transported FDF.
Since then, this methodology has experienced widespread usage, and is now regarded as one of the
most effective and popular means of LES worldwide. Some of the important contributions in FDF
by others are in its basic implementation [26–41], fine-tuning of its sub-closures [42–44] and its
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validation via laboratory experiments [30, 45–49]. The FDF is finding its way into industry, into
commercial codes, and has received broad coverage in several text- and hand-books [1,5–7,50–52].
For a recent review, please see Ref. [10].

A major challenge associated with FDF is the amount of computational resources it requires.
Petascale computing has been a reality for research for the past couple of years, and exascale
platforms are the current technological trend which are expected to be available by the end of
this decade [53]. Being able to take advantage of the enormous opportunity of such extreme scale
computing platforms is vital to the success of LES and its application in industrial practice.

Design and implementation of scalable parallel algorithms is the key enabler in the petascale
arena. However, this is not a trivial task, especially in LES of reacting flows where complex
chemistry calculations typically dominate the computation. The issue is further exacerbated by
the dynamic and inhomogeneous nature of the flow. The variation in composition affects the
level of stiffness of the chemistry equations, which in turn causes the computational load to vary
significantly throughout the domain and duration of a simulation. This is a common scenario in
simulating all but the most trivial of configurations, and straightforward parallelization techniques
are ineffective with limited scalability.

An effective parallelization must be adaptive and be driven by the dynamics of the flow. For
this purpose, here we develop and implement such a methodology termed “Irregularly Portioned
Lagrangian Monte Carlo Finite Difference” (IPLMCFD). This is a dynamic load balancing tech-
nique that is very effective for structured mesh configurations, but is also applicable to unstructured
meshes. It allows for efficient LES of reacting flow on thousands of computing units, and in the
context of FDF, has the potential to scale to hundreds of thousands of computing units by readily
being able to take advantage of the heterogeneous multicore nature of today’s petascale systems.

2 LES via FDF

The primary transport variables in exothermic, chemically reacting, variable density flows, are the
fluid density ρ (x, t), the velocity vector ui (x, t) , i = 1, 2, 3 along the xi direction, the specific en-
thalpy h (x, t), the pressure p (x, t), and the mass fractions of Ns species, Yα (x, t) (α = 1, 2, . . . , Ns),
where x ≡ xi(i = 1, 2, 3) and t denote space and time, respectively. Implementation of LES involves
the use of the spatial filtering operation [54,55]
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where H denotes the filter function of width ∆H, and 〈Q (x, t)〉` represents the filtered value of
the transport variable Q (x, t). In reacting flows, it is convenient to consider the Favré filtered
quantity, 〈Q(x, t)〉L =〈ρQ〉/〈ρ〉. The transport variables satisfy the conservation equations of mass,
momentum, energy and species mass fractions [56]. The filtered form of these equations are:
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where τij and Jαi denote the viscous stress tensor and the scalar fluxes, respectively. In Eq. (4), Sα
denotes the source term and this equation represents transport of the species mass fractions and
enthalpy in a common form with φα ≡ Yα, α = 1, 2, . . . , Ns, φσ ≡ h, σ = Ns + 1. The SGS closure
problem is associated with Tij = 〈ρ〉(〈uiuj〉L − 〈ui〉L〈uj〉L), Mα

i = 〈ρ〉(〈uiφα〉L − 〈ui〉L〈φα〉L), and
〈ρSα〉 . The FDF provides an effective means for this closure. For the scalars’ array φ(x, t) and the
velocity field, u(x, t), the SGS statistical information is included in the joint velocity-scalar filtered
mass density function (VS-FMDF), denoted by F(v,ψ,x, t), where (v,ψ) denote the probability-
space for the (u,φ) fields. The transport equation for this FDF is [13]:
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where 〈 | 〉 denotes the conditional filtered values. As Eq. (5) shows, the effects of SGS convection
and combustion are in closed forms. However, all of the terms involving conditional filtered values
require closures. The scalar FMDF Fφ(ψ,x, t) (the marginal FMDF of the scalar field) is obtained
by integration of the VS-FMDF over the velocity domain:
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Again, the effects of chemical reaction appear in a closed form. However, in this case, the SGS
convection (second term on the LHS) requires a closure, and a conventional SGS model is typically
employed [17,24,26–40,42,43].

Currently, the most successful FDF closure is based on the generalized Langevin model (GLM)
and the linear mean square estimation (LMSE) model as used in RANS [5]. Assuming a constant
value for µ = γ; i.e. unity Schmidt (Sc) and Lewis (Le) numbers, the model is of the form of
coupled stochastic differential equations [13]:
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where dWi is the Wiener-Levy process [57], X+
i , U

+
i , φ

+
α are probabilistic representations of position,

velocity vector, and scalar variables, respectively. In the model, ω is the SGS mixing frequency, ε
is the dissipation rate, k is the SGS kinetic energy, and ∆L is the LES filter size. The parameters
C0, Cφ and Cε are model constants and need to be specified.

For the marginal SFMDF, the model for the scalar transport is the same. But the velocity field
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must be obtained by other (non-FDF) means. In this case, the physical transport is modeled via

dXi(t) =

[
〈ui〉L +

1

〈ρ〉
∂(γ + γt)

∂xi

]
dt+

√
2(γ + γt)/〈ρ〉 dWi(t), (8)

Figure 1: Two-dimensional schematic of the
hybrid solver.

In this equation, γt is the SGS diffusivity which is
modeled with a gradient diffusion model, equivalent
to the one used for the SGS flux of the scalars.

3 Simulations

An effective way to solve the FDF numerically is
via Lagrangian Monte Carlo (MC) methods [58,59].
These methods have been the primary means of solv-
ing the PDF in RANS [5,60] and, thus far, the most
effective choice for solving the FDF in LES. In the
Lagrangian setting, the FDF is represented by an
ensemble of particles. Each of these particles carry
information pertaining to the physical field (i.e. each
of the scalar and velocity variables) and also the po-
sition vector. These properties are updated via tem-
poral integration of the modeled SDEs [61].

The numerical solution procedure is based on a
hybrid scheme in which the Lagrangian MC solution
of FDF provides the unclosed terms in the filtered Eulerian field Eqs. (2-4). These equations are
in turn solved by a conventional CFD technique, such as the second-order in time, fourth-order
in space finite difference (FD) scheme of Gottlieb and Turkel [62] as employed previously [24].
This is conducted on a structured three-dimensional mesh, superimposed by the grid-free MC
domain. A typical two-dimensional slice of the domain is presented in Fig. 1. The two solvers
must communicate with each other, and this communication is achieved through interpolation
and ensemble averaging. This averaging is performed by considering an ensemble of particles,
NE , about an FD point with an ensemble domain side length of ∆E . As NE increases, and ∆E

decreases the ensemble statistics will approach the filtered values. Generally speaking, enlarged
ensemble domains have the advantage of increased NE , whereas small ensemble domains have the
advantage of decreased ∆E . Communication from the Eulerian solver to the Lagrangian solver is
achieved through interpolation. For instance, the filtered hydrodynamic values appearing in Eq. (8)
must be interpolated to each particle location. This intimate coupling of the two solvers makes
development of an efficient parallel algorithm a challenge.

4 Scalable Parallelization

LES via FDF is computationally more expensive than the conventional LES. This overhead is
expected considering all of the SGS statistical information that LES/FDF provides in comparison
to other schemes. Furthermore, chemistry needs to be evaluated for each of the MC particles, and
their count is typically about an order of magnitude more than that of the FD points, or more
in cases where higher order statistics are sought. When finite-rate kinetics are considered this
involves solving a stiff set of coupled nonlinear ordinary differential equations. The result is that
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Figure 2: Instantaneous distribution of CPU requirements in the LES/FDF solver. (Left) fil-
tered CO mass fraction field, (right) CPU time in milliseconds spent during particle computations.
Transparent regions (cold center, and co-centric air) indicate negligible computation.

LES/FDF simulations for reacting flows quickly become very expensive. As outlined by Yilmaz et
al. [63], serial algorithms would take years to execute for even moderate Reynolds numbers and
grid resolution. Therefore, development of a highly scalable algorithm is necessary.

It might be mistakenly perceived that the Lagrangian MC methodology as described lends
itself to embarrassing parallelism, as is the case with some particle based simulations. However,
the matter is complicated by the hybrid particle/mesh nature of methodology (due to intimate
coupling) and the stiffness of chemical reactions (which causes spatial load imbalance). At any
instant of the simulation, different regions of the flame undergo different stages of combustion.
Due to stiffness, for some states the integration of chemistry sub-step can be done very quickly
(e.g. in cold regions), but for some others implicit integration is required (extinction/reignition
regions), which is particularly expensive due to calculations of the Jacobian matrix corresponding
to Eq. (7c) and dense matrix inversion for each sub-iteration. This is made evident in Fig. 2 which
shows the variation in the computational load at some instant during the simulation. It is observed
that the computational requirement is highly non-uniform throughout; virtually no time is spent
for calculations near the cold jet or the cold surrounding air, and most of the computational load
is concentrated around the hot pilot (identified by the CO levels).

A commonly employed parallelization strategy in typical structured finite-difference or finite-
volume methods is the uniform and fixed-in-time block domain decomposition. Similarly, and
even more commonly, in unstructured solvers a static decomposition is employed whereby the
mesh is partitioned a priori during the preprocessing stage. With this technique, termed “uniform
decomposition” here, the number of degrees-of-freedom is commonly adjusted to be equal for each
partition, and work per partition is assigned to different processors at the onset of the simulation.
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Figure 3: Domain topology with (a) the uniform decomposition, and (b) adaptive irregular de-
composition. Non-idle CPU times per time-step for each rank for subsequent time-steps with (c)
uniform decomposition, and (d) adaptive irregular decomposition.

This provides an effective parallelization as the communication boundaries are minimized and the
messaging is relatively easy to implement. However, in general, especially in the case of reacting
flows with finite-rate kinetics, uniform decomposition exhibits very poor load balancing. This
feature is made evident in Fig. 3a. The result is that calculations on a few processors continue
while the rest of the processors remain idle, which is quite inefficient.

The approach developed in this work is termed “Irregularly Portioned Lagrangian Monte Carlo
Finite Difference” (IPLMCFD). The name captures the essence of the methodology, which is that
the computational domain is decomposed into irregularly shaped and sized partitions. Each parti-
tion constitutes an entirely self-contained hybrid Eulerian/Lagrangian flow solver. The advantage
to this approach is that communication between the Lagrangian and Eulerian solvers is purely local,
and data exchange is limited to the communication between neighboring partition. This is typical
of finite difference and particle methods, in which the communication is due to the so called halo
exchange, where the solution on each partition boundary is communicated to the overlapping parts
of the neighboring partition. The halo size is determined by the order of the spatial discretization,
and is a property of the simulation which is independent of the number of computing units. An
earlier version of the methodology, IPLMC [63] considered the load-balanced parallelization of only
the MC solver in which the partitions communicated with the Eulerian solver in a collective all-
to-one pattern. This method, while an improvement over the uniform counterpart, is not scalable
beyond a few hundred computing units. Implementation of IPLMCFD is somewhat challenging
but presents a significant step forward, as shown in Fig. 5.

As mentioned above, a consequence of the dynamic and unsteady nature of LES is that as the
simulation proceeds, spatial distribution of the computational load varies in a transient manner
following the changes in the chemical composition. Therefore, any a priori and static decomposi-
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Figure 4: Evolution of the walltime-per-iteration using 4000 cpu cores.

tion, no matter how balanced, would not facilitate optimum scalability throughout the simulation.
In IPLMCFD, this is accounted for in a straightforward manner by repeated application of the
algorithm throughout a give simulation, each time generating a new set of balanced partitions.

An important consideration is the frequency of such repartitioning. Ideally, each iteration
begins with a perfectly balanced set of partitions. However, this is not practical as there is a
significant communication cost associated with rebalancing of the load, so much so that in extreme
cases all of the simulation data may need to be communicated between all computational units
involved. Such communication significantly hinders scalability. Fortunately, the temporal change
in the spatial distribution is relatively smooth, allowing a decomposition to remain fairly balanced
for several timesteps. Figure 4 shows walltime per timestep of a simulation with 4000 computing
units. Initially, the simulation is started with an unbalanced partition. Then, at around 8000
iterations, balancing is applied which provides an immediate boost in performance of more than
300%. The performance degrades as the simulation evolves for the next 2000 or so iterations, then
balancing is reapplied. In its current implementation, load balancing is not optimized, and relies
on repeated checkpointing (and is responsible for the sporadic spikes in the plot). A much more
efficient implementation is possible by allowing for more frequent rebalancing and improved overall
performance. The issue of local data migration required for such a dynamic load balancing without
sacrificing scalability has been investigated by many; e.g. see Ref. [64]. Softwares like Zoltan [65]
can easily deal with this issue.

5 Scalability of IPLMCFD

To present the scalability characteristics of the IPLMCFD methodology, the FDF simulation of
a Bunsen burner [66] is conducted. There are two ways by which the scalability is assessed. (1)
Strong scalability: the total number of degrees-of-freedom (dof) N (her, the size of the simulation)
is kept constant while the number of computing units p are varied. (2) Weak scalability: Here, N
and p are varied proportionately, keeping dof per computing unit Np fixed. These are called strong
and weak scalability. Here, only strong scaling results are presented.

The total number of FD points is 2.5M and the number of MC particles is approximately 25M .
The speed-up, defined as the ratio of sequential walltime (t1) to the walltime using p processors (tp)
is considered for a varying number of processors. Timings are obtained by running the simulation
for 10 full time steps and taking the average. No rebalancing of load is done for this interval, and
the input/output operations (for checkpointing, and postprocessing) are omitted. The runs are
conducted on Kraken, the supercomputer at the National Institute for Computational Sciences,

7



0 50 100 150 200 250 300
0

50

100

150

200

250

300

p

t 1
/
t p

 

 

Ideal (45o line)
IPLMC
Uniform
IPLMCFD

(a)

0 2k 4k 6k 8k 10k
0

2k

4k

6k

8k

10k

p

t 1
/
t p

 

 

Ideal (45o line)
Uniform
IPLMCFD

(b)

Figure 5: Strong scaling results for IPLMCFD shown in comparison with that of uniform decom-
position, and earlier IPLMC [63] methodology.

Tennessee, the largest resource on National Science Foundation’s (NSF) Extreme Science and En-
gineering Discovery Environment (XSEDE). Kraken is comprised of 9,408 compute nodes, each of
which has 12 processing cores. Except for one of the cases, which is to be described shortly, all
runs are performed with one processor core per partition, using pure message passing in between
all cores.

From Fig. 5a it is evident that the IPLMCFD methodology outperforms uniform decomposition,
as well as the IPLMC method. It is important to emphasize that the size of the simulation is
kept fixed for all three methods and for all processors. Not shown are the actual walltimes. In
particular, the sequential run for this configuration takes about 3,000 seconds per iteration1; with
256 processors, uniform partitioning has 45/250 = 18% scalability with 66.7 seconds per time
step, whereas IPLMCFD soars at 97% scalability bringing down the walltime to 11.4 seconds. In
other words, a mere load balancing with the same resources provides almost a 6 fold increase in
computational throughput!

Figure 5b shows that by moving into the thousands of processors range an unbalanced decom-
position is simply not feasible. IPLMCFD scales almost ideally up to 4000 processors, and starts
to tail off slightly beyond this limit as the effects of communication become more and more pro-
nounced. Nevertheless, for such a moderately sized simulation, the IPLMCFD performs nicely. We
project this tailing-off to surpass 10,000 processors for larger simulations with which the data-to-
communication ratio is much higher.

Being able to utilize almost ten thousand processors effectively in order to conduct LES of
complex hydrocarbon flames within hours, is encouraging. However, ten thousand processors do
not qualify as “petascale,” and will be rather insufficient given that our objective is to be able to
conduct much larger, realistic, and industry scale simulations. It is important to emphasize once
again that the analysis shown thus far has been for purely message passing, single processor-core
per partition runs. The next phase of improvement will substantiate from recognizing the trend in
today’s supercomputing: petascale computers are becoming predominantly heterogeneous [67]2.

1The mesh size for this analysis is moderate enough to allow for sequential runs. In a more realistic setting memory
and time constraints will prohibit this.

2See http://top500.org/list/2012/06/100 for June 2012 listing
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The evaluation of chemistry ODEs Eq. 7c is computationally the most significant portion of per
partition workload, and for each MC particle this computation can be carried out independently.
With this observation, a further local refinement can be made in a straightforward manner whereby
the work for ensembles of MC particles in a given partition can be split out to individual CPU
cores and/or graphical processing units (GPUs), using shared memory parallelism (for example,
via OpenMP [68]), and general purpose GPU programming (for example, via NVIDIA/CUDA
[69]), respectively. Given thread-safe and GPU based implementations of chemistry and stiff-solver
routines, such fine grained parallelism can be implemented scalably in a straightforward fashion.
This is an active area of research, and some example implementations are available [70,71]. These
efforts, combined with IPLMCFD, will provide a hybrid implementation that can scale up and
beyond the petascale limit, enabling LES of reacting flows with unprecedented fidelity.

6 Summary and Conclusions

The dynamic and unsteady effects of combustion chemistry and the consequent computational
load imbalance issue are some of the primary challenges in the design of scalable parallel domain
decomposition algorithms. Here, we introduce the “irregularly portioned Lagrangian Monte Carlo”
(IPLMCFD) method which overcomes some of these challenges in the context of a solver for the
filtered density function (FDF) on structured as well as unstructured grid based solvers. We
demonstrate the scalability of the algorithm via large eddy simulation of a laboratory scale flame
with realistic chemistry.

The LES/FDF methodology is aptly suited to exploit the multi-core and accelerator based
hybrid architecture of modern supercomputers. Our on-going work is focused on shared memory
multi-threaded and general purpose GPU enabled implementations of chemistry and stiff ODE
solver routines. This effort will provide the fine-grained parallelism within a partition. Then, in
combination with the virtually unbounded distributed parallel scalability enabled by IPLMCFD,
we will be able to leverage petascale platforms fully for high-fidelity, highly reliable LES of industry
scale applications.
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