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Abstract: To investigate the flow structure of a hydrothermal convection in the deep sea, a thermal
convective flow is simulated, where the temperature of the heated water and the environmental
pressure are very high above its critical point. The compressible Navier-Stokes equations are solved
using the numerical method similar to an incompressible flow. The equations are discretized based
on the multidirectional finite difference method. Numerical results clearly show differences in the
flow field depending on the temperature of the heated water. Under conditions close to the critical
temperature, the flow is sensitive to the temperature of the heated water. At temperature above
the critical temperature, the thermal convection develops faster and the flow structure is extremely
complex and unsteady.
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1 Introduction

Hydrothermal convective flows are found in geothermally heated water issued from hydrothermal vents.
They are found in deep oceans of depth over 2,000 m where the hydrostatic pressure is over 20 MPa, and
the temperature of the heated water is sometimes over 300◦C. Under these conditions, where the pressure
and temperature are beyond the critical point, water emerging from these vents can be in a supercritical
state that is a condition between a gas and a liquid. Close to the critical point, small changes in pressure or
temperature cause large changes in density. However, under the conditions of high constant pressure and low
environmental temperature in the deep sea, the density changes principally depending on the temperature,
and the heated water issued from the vent is cooled and rapidly becomes liquid. Since supercritical fluids
generally have properties between those of a gas and a liquid, properties such as density significantly change
during the phase transition to the liquid. Therefore, hydrothermal convection beyond the critical temperature
in the deep sea can be regarded as a thermal convection with properties rapidly changing with temperature.

In the present study, to investigate the flow structure of the hydrothermal plumes at extremely high
temperature in the deep sea, a simple numerical model is proposed and the flow is simulated. Understanding
the mechanism of the complex unsteady flow with large changes in the temperature and other properties,
helps to clarify a process of the advection and diffusion of materials which are issued from hydrothermal
vents accompanying the heated water. That is important in order to deepen the understanding of the
oceanic crust that contains abundant resources. Moreover, it may be useful for understanding the “seafloor
hydrothermal circulation” that is the very large-scale water circulation caused by the hydrothermal eruption
and absorption of the cold sea water into the seafloor.
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2 Computational Method

2.1 The basic equations

The basic equations are derived from the compressible Navier-Stokes equations and the energy equation
using the assumption that pressure difference from environmental pressure pb is sufficiently small and does
not affect the density change. And also the flow velocity is assumed to be much smaller than the sound
velocity. This means that the density is only a function of temperature. The basic equations in Cartesian
coordinates with the x3-axis in the vertical direction in space, are as follows;
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The energy equation (3) is obtained using Cp(DT/Dt) ∼ Cv(DT/Dt)+ p(D/Dt)(1/ρ). Equation for density
ρ is derived using an interpolation polynominal of the temperature under constant pressure:
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ρ
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(0 ≤ m ≤ M, T0 = Tmin : Temperature of environmental water, TM = Tmax : Temperature of heated water.)

Other properties, viscosity μ, thermal conductivity κ and specific heat at constant volume Cv are also
functions of the temperature, in the same way as the density.

Using a pressure difference δp from the environmental water pressure pb that satisfies the hydrostatic
equilibrium equation ∂pb/∂x3 = −ρ0g, pressure gradients in Eq. (2) are rewritten as
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where ρ0 is the density of environmental water and is a constant. When vertical length scale is small, change
in pb with the depth can be ignored. Here, pb is assumed to be almost constant at p0 = 23 MPa which is
above the critical pressure of 22.064 MPa.

Using Eq. (5) and p0 instead of p in Eq. (3), the basic equations are rewritten as
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ui = Uũi, T = T0T̃ , δp = (U2ρ0)δ̃p, ρ = ρ0ρ̃, am = ãm/ρ0, bm = b̃m/ρ0, xi = Lx̃i, t = (L/U)t̃
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where variables with˜are normalized by the characteristic velocity U , length scale L, density ρ0 and temper-
ature T0. Hereafter, characters without˜denote normalized variables and p represents δ̃p. C∗

v is regarded as a
function of temperature Cv, however, is not affected by the differential operator D/Dt nor ∂/∂xi. Since μ, κ
and Cv change with temperature, Reynolds number Re and Prandtl number Pr are functions of temperature.
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The basic equations are solved using the projection method that is a method used in solving the incom-
pressible equations. Using this method, Poisson’s equation (9) is derived and solved for obtaining pressure.
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Operators with ∗ are suitable difference approximations to the original differential operators. The last term
with 1/Δt in Eq. (9) is the correction term used for preventing the accumulation of the error when u is
solved using Eq. (7).

The equations are discretized based on the multidirectional finite difference method. Space derivatives
are discretized using the second order central difference approximation with the exception of the convective
terms. For the convective terms, the third order upwind KK scheme is used to stabilize the computation. It
has been found to be the most suitable for the high Reynolds number flow computations. In the third order
upwind scheme, the leading numerical error term contains a fourth order derivative, where the effects of the
second order numerical diffusions are carefully removed. The numerical diffusion of fourth order derivatives
is of short range and does not conceal the effect of molecular diffusion, but at the same time stabilizes the
computation.

The second order Crank-Nicolson implicit scheme is used for the time integration.

2.2 The hybrid upwind scheme

In the simulation of the turbulent convective flow at high Reynolds numbers and high temperatures, a
high accurate scheme such as the third order upwind scheme is required. In this flow, a temperature
gradient becomes very high and the discontinuous surface similar to the shock wave frequently appears in
the temperature field. Using the third order upwind KK scheme, the high frequency oscillation caused by
the discontinuity can be successfully removed. However, “humps” that appear as an unphysically high or
low temperature region are generated near the discontinuous surface. The first order upwind scheme is
effective in suppressing such oscillation. However, since the second numerical diffusion contained in the
leading numerical error conceals the effect of molecular diffusion, the first order upwind scheme should be
used restrictively, only near the discontinuities. In this computation, the hybrid first-third upwind scheme
is used for convective terms in the energy equation (8) to remove the oscillations near the discontinuities in
the temperature field. In Eq. (10), Adv3 and Dif3 represent the advection term and the diffusion term of
the convective term approximated by the third order upwind KK scheme. And Dif1 is the diffusion term
from the first order upwind scheme. The hybrid scheme for the x direction in the uniform grid system is
given by
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where Tk is an approximation of T (kΔx) = T (xk), and α (0 ≤ α ≤ 1) in Eq. (10) is the weight for diffusion
term from the first order upwind scheme. Weight α is obtained by
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T �→ φ at each grid point is a temperature gradient preserving map (Fig. 1). Dxxφ+ represents the difference
between φ+1 and the average of φ+2 and φ0. Similarly, Dxxφ− is the difference between φ−1 and the average
of φ0 and φ−2. l+ + l− is the sum of two sides of triangle φ+1φ0φ−1. They are explained in Fig. 2. Weight
α represents the discontinuity at the next points of the temperature curve.
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Figure 1: Temperature-gradient preserving map T �→ φ.
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α.

On the other hand, Dif3 that contains the difference approximation of the fourth order derivative, is
rewritten as
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Equation (12) (and Fig. 3) shows that a diffusion effect of Dif3 can work at the central point when the
strong discontinuity appears either at the central point or at one of the next points. This is the reason of
generating “humps” using the third order upwind scheme.

When the strong discontinuity appears only at the neighbor-
ing points and not at the central point, α becomes large sup-
pressing the effect of Dif3, while Dif1 becomes effective at the
central point. However, because the discontinuity at the cen-
tral point is small, the value of Dif1 that consists of the second
diffusion should also be small, and the overabundant diffusion
effects due to the first order upwind scheme can be avoided.

On the other hand, when a strong discontinuity appears only
at the central point, α becomes small and the high frequency
oscillation at the discontinuous point is removed by Dif3 that
is the effect of the third order upwind scheme.

It should be noted that, in the present hybrid scheme, the
first order upwind scheme is employed for the purpose of pre-
venting the oscillation not to remove the oscillation that is al-
ready present.
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Figure 3: Geometric meaning of Dif3.

2.3 Boundary conditions

The geothermally heated water issues from a hydrothermal vent in the deep sea, while the cold sea water
is absorbed into the seafloor. That can be called “seafloor hydrothermal circulation”, and large amount
of water is always stored within the oceanic crust. Since the seafloor hydrothermal circulation is the very
large-scale system, too much computer resources are required to simulate the hydrothermal convection of the
whole seafloor hydrothermal circulation. In the present computation, the flow is assumed to be axisymmetric
about the x3 axis that passes through the center of the circular vent (Fig. 4). The radius of the vent is
h =2.5 cm and a heated water pool is placed under seafloor with a partition-wall dividing the domain. The
flow simulation is carried out in the x1x3 domain using a non-uniform Cartesian grid that is concentrated
near the hydrothermal vent. The number of grid points is 513 × 513.
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A convection condition at the top boundary and a zero gradient condition at the side boundary are
employed for the velocity and temperature. At the bottom, free-slip boundary condition is imposed. The
heated water pool and the sea above the seafloor are partitioned by a non-slip and non-thermal-conduction
wall. The temperature of the wall is the same as the initial temperature of the ambient water.
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Figure 4: Computational domain in the axisymmetric system about the x3 axis.

3 Computational Results

Flow simulations for hydrothermal convection are carried out for two cases of temperature TM = 625 K and
675 K, both near the critical temperature 647.096 K. The pressure and temperature of the environmental
water are 23 MPa and 275 K respectively. In the case of TM = 625 K, the heated water is in the liquid state
because the temperature is lower than the critical temperature (Fig. 5 and Table 1). On the other hand, the
heated water at 675 K is in the supercritical state, while it becomes liquid when cooled down.
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Figure 5: Water pressure-temperature phase diagram.

Table 1: Critical properties of water.

Temperature 647.096 K

Pressure 22.064 MPa

Density 322 kg/m3

How the physical properties and non-dimensional parameters change with water temperature when the
pressure is constant at 23 MPa, are presented in Fig. 6. Figure 6 shows they significantly change near the
critical temperature of 647.096 K.

Figures 7 and 8 show the temperature fields at the initial stages of computation for the TM = 625 K
and 675 K cases. The black line in Fig. 8 is the contour line representing the critical temperature. In the
same way, Figs. 9 - 16 show the initial stages of the density, Reynolds number, Prandtl number and Grashof
number fields. The Reynolds number and the Grashof number are defined by the diameter of the vent and the
average spouting velocity at the vent. The convective flow of the TM = 675 K case shows more fluctuations
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and develops faster than the TM = 625 K case. Also in the TM = 675 K case, the Reynolds number, Prandtl
number and Grashof number significantly change in the flow field. It suggests that the flow is much more
complicated containing several different fluid dynamic characteristics, because the temperature is changing
near the critical temperature for the TM = 675 K case.

In Figs.17 and 18, the time averaged fields of temperature and vertical velocity are presented for each
case of TM . The physical properties are time averaged between 2 s and 6.5 s. By comparing the figures, it
can be found that in the TM = 675 K case the flow near the vent is fluctuating more. Also a localized flow
going down next to the upward flow can be found.

Figure 19 shows time development of the flow field between 3.35 s and 3.62 s for the TM = 675 K case.
In this figure, time-series-images are displayed from the bottom to the top and from the left to the right.
In each image, vertical velocity field with black contour line representing the critical temperature (inversion
image) and the time derivative of baroclinic torque −(g/ρ)∂ρ/∂x1 are presented on the left and right sides,
respectively. The figure shows large unsteady and fast change of the over-critical-temperature region. On
the outerside, vortex-pairs moving downward by self-induced velocities can be found. That can be the reason
for the downwash found in the time averaged field.

The visualization software used here is Clef2D developed by Institute of Computational Fluid Dynamics.

4 Conclusions

Hydrothermal convective flows of two temperatures near the critical temperature were simulated using the
numerical method similar to an incompressible flow. Under conditions close to the critical temperature,
the flow was sensitive to the temperature of the heated water and large difference in the flow field was
observed. At temperature above the critical temperature at 675 K, the thermal convection developed faster
and explosively. Also in this case, the flow structure was extremely complex and unsteady. The phenomenon
may be because the density and other physical properties change significantly even with small changes in the
temperature, when the temperature is near the critical temperature. In the convective flow near the critical
temperature, if some part of the flow field’s temperature is above the critical temperature, the fluid dynamic
characteristics of the flow can be significantly different.
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(a) Density ρ (black), viscosity μ (red) and thermal dif-

fusivity κ/Cv (blue).

(b) Kinematic viscosity ν = μ/ρ.

(c) Prandtl number Pr. (d) Grashof number Gr based on the diameter of the vent

2h and the environmental temperature T0.

(e) Rayleigh number Ra. (f) (Prandtl number)/(Kinematic viscosity) → Peclet

number Pe.

Figure 6: Physical properties and non-dimensional parameters depending on temperature for water at pressure of

23MPa.
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t = 0.05 s t = 0.3 s t = 0.9 s

Figure 7: Temperature fields at initial stages for the TM =625 K case. Temperature shading in the range 275 K -

675 K.

t = 0.05 s t = 0.3 s t = 0.9 s

Figure 8: Temperature fields at initial stages for the TM =675 K case. Temperature shading in the range 275 K -

675 K. Black contour line representing the critical temperature.
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t = 0.05 s t = 0.3 s t = 0.9 s

Figure 9: Density fields at initial stages for the TM =625 K case. Density shading in the range 118 kg/m3 - 1011

kg/m3.

t = 0.05 s t = 0.3 s t = 0.9 s

Figure 10: Density fields at initial stages for the TM =675 K case. Density shading in the range 118 kg/m3 - 1011

kg/m3. Black contour line representing the critical temperature.
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t = 0.05 s t = 0.3 s t = 0.9 s

Figure 11: log10Re in the flow fields at initial stages for the TM =625 K case. Color shading in the range 4.5 - 5.7.

t = 0.05 s t = 0.3 s t = 0.9 s

Figure 12: log10Re in the flow fields at initial stages for the TM =675 K case. Color shading in the range 4.5 - 5.7.

Black contour line representing the critical temperature.
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t = 0.05 s t = 0.3 s t = 0.9 s

Figure 13: Prandtl numbers in the flow fields at initial stages for the TM =625 K case. Color shading in the range

0.7 - 10.

t = 0.05 s t = 0.3 s t = 0.9 s

Figure 14: Prandtl numbers in the flow fields at initial stages for the TM =675 K case. Color shading in the range

0.7 - 10.
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t = 0.05 s t = 0.3 s t = 0.9 s

Figure 15: Grashof numbers in the flow fields at initial stages for the TM =625 K case. Color shading in the range

105 - 2.1× 1011.

t = 0.05 s t = 0.3 s t = 0.9 s

Figure 16: Grashof numbers in the flow fields at initial stages for the TM =675 K case. Color shading in the range

105 - 2.1× 1011.
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TM = 625 K TM = 675 K

Figure 17: Time averaged temperature fields. Temperature shading and contour lines in the range 275 K - 675 K.

TM = 625 K TM = 675 K (Black line : the critical temperature)

Figure 18: Vertical velocity and stream lines in the time averaged fields. Vertical velocity shading in the range −0.5

- 0 - 1.5 m/s (blue - black - red).
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Figure 19: Time development of the flow field in the TM =675 K case. Time sequence: from the bottom to the top

and from the left to the right. Left of the vertical axis: vertical velocity shading (inversion image) in the range −0.8

- 0 - 2.4 m/s (blue - gray - red). Black contour line representing the critical temperature. Right of the vertical axis:

Time derivative of baroclinic torque. Color shading: red-counterclockwise and blue-clockwise.
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