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Abstract: The evolution of a perfectly wetting, gravity-driven, thin, continuously-fed liquid �lm
down an inclined planar substrate is modelled using the long-wave approximation with, as ob-
served experimentally, a periodic pattern of �nger-like rivulets forming at the unstable advancing
front. The required long-time solution, with the merger of neighbouring rivulets a possibility, is
obtained using a purpose designed e�cient multigrid methodology incorporating complementary
error-controlled automatic spatio-temporal adaptivity and mesh devolution strategies. Critical
wavelengths are extracted from the various solutions showing the e�ect of inclination angle and
comparison drawn with the results of a linear stability analysis (LSA) based on the same �ow
conditions.
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1 Introduction

The motion of a thin liquid �lm down an inclined planar substrate can result in complex behaviour and
interesting dynamics at the associated advancing front which becomes unstable, forming a periodic pattern
of �nger shaped rivulets. Huppert's [1] �rst detailed study of the problem showed the critical wavelength
of the emerging instability, when scaled with the capillary length of the �uids considered, to be captured
by a single linear �t of the data collected. This inspired many subsequent investigations including several
experimental ones, see for example [2, 3, 4], the results of which were found to be in broad agreement with
his �ndings.

In the intervening years, theoretical investigations have concentrated, in the main, on linear stability
analyses of the travelling wave solution, see [5]; this approach does, however, prove inadequate for substrates
with a low inclination angle. An alternative approach is to explore the full three-dimensional problem [6],
requiring a numerical solution of the associated governing equations. This route is adopted here by invoking
the simplifying assumption that the �ow can be considered lubrication like [7].

To fully resolve the advancing front requires a �ne computational grid and thus an e�cient numerical
method is necessary to obtain long-time solutions. Multigrid methods have been developed for use with
lubrication type �lm �ows on non-planar substrate featuring topographies and occlusions; within these
methods automatic error-controlled local mesh re�nement and time-stepping has been included to improve
e�ciency [7, 8]. Li et al.[9] developed a shifting mesh algorithm speci�cally to allow for the investigation of
long-time rivulet formation, taking advantage of the large areas of constant �lm thickness in the problem,
but it is restrictive in the sense that it is not suitable for use with automatic, error-controlled local mesh
re�nement. Accordingly a di�erent grid devolution strategy is used in the present work.

2 Problem Formulation

The problem of interest is shown schematically in Figure 1. It consists of a thin �uid �lm of thickness H,
�owing down a substrate (width, Wp, length, Lp) inclined at angle θ to the horizontal; the volumetric �ow
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Figure 1: Schematic diagram of the cross-sectional �lm �ow down a planar substrate (width, Wp, length,
Lp) inclined at an angle α to the horizontal. H0 denotes the asymptotic, fully-developed �lm thickness and
H the �lm thickness at any (x, y) point.

rate is Q0 per unit width. The �uid is considered to be incompressible with constant density, ρ, viscosity,
µ, and surface tension, σ and to be perfectly wetting. A precursor �lm of thickness, H∗ (<< H0), located
ahead of the advancing front [5, 6, 10]. The long wave approximation is invoked on the assumption that

the asymptotic �lm thickness, H0, is small compared to the capillary length, L0 = H0/(6Ca)
1
3 , where

Ca = µU0/σ ∼ O
(
ε3
)
� 1 is the capillary number, that is H0/L0 = ε � 1. Taking the characteristic

velocity as U0 = 3Q0/2H0, and introducing the following scalings [8]:
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the governing Navier-Stokes and continuity equations, for no slip at the substrate and the usual stress and
kinematic conditions at the free surface [11], reduce to the following coupled equation set:
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− 2

)]
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, (1)

p = − ε3

Ca
∇2h+ 2ε (h− z) cot θ, (2)

where h and p are the non-dimensional �lm height and pressure, respectively.
At the upstream boundary a fully developed �lm thickness is prescribed (h = 1) while the downstream

boundary is set such that h(lp, y) = h∗ with zero �ux conditions de�ned for h and p at the other boundaries,
namely:
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where lp = Lp/L0 and wp = Wp/L0. The initial �lm pro�le consists of a front perturbed with a superposition
of N modes with random length, lj ∈ [−0.2, 0, 2], and di�ering wavelength, λ0,j , as in [6] via:

h(x, y) = 0.5

{
1 + h∗ − (1− h∗) tanh

[
(x− xf (y))

δ

]}
, (3)

xf (y) = xu −
M∑
j=1

lj cos (2πy/λ0,j), (4)
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where xu is the position of the slope of the unperturbed front (a value of 30 is prescribed); δ is the steepness
of the pro�le (taken to be 0.01) and λ0,j = 2wp/j for j = 1, ...,M . The results are independent of the initial
condition provided M is su�ciently large - a value of M = 50 is found to be adequate.

3 Method of solution: adaptive multigrid

Given the extent of the solution domain involved and the long-time solutions required, a key feature of the
numerical methodology used to solve equations (1) and (2), is one based on a strategy employing automatic
error controlled adaptive time stepping and mesh re�nement within an e�cient multigrid framework as
described below. Noting that su�ciently far away from the advancing front, the �lm thickness remains
constant, provides another avenue for exploitation, in that judiciously removing nodes in such regions has a
dramatic e�ect in terms of further reducing the solution time without loss of accuracy.

3.1 Spatial discretisation

Discrete forms of equations (1) and (2) were obtained using central-di�erencing [8], leading to second order
accurate spatial analogues of the form:
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pi,j +
ε3

Ca∆2
[hi+1,j + hi−1,j + hi,j+1 + hi,j−1 − 4hi,j ]− 2εhi,j cot θ = 0, (6)

for all points (i, j) in the computational domain, Ω; with ∆ the grid size (for simplicity a square mesh is
employed). The prefactors in equation (5) are obtained using linear interpolation between neighbouring grid
points and are given by, for example,
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and similarly de�ned for the other prefactors.

3.2 Temporal discretisation

Equation (1) is discretised temporally using the implicit, second-order accurate Crank-Nicolson method to
approximate the time derivatives involved in equation (5). For convenience the spatial discretisation is
written as a function of hi,j , pi,j , hi±1,j and pi±1,j so that:
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for all (i, j) ∈ Ω. Employing the Crank-Nicolson method yields an equation for the variables h and p at
tn+1 (denoted by superscript n + 1) in terms of the calculated values at t = tn (denoted by superscript n),
namely:
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with ∆tn+1 = tn+1 − tn.

3.3 Full multigrid strategy

The advantage of multigridding is the ability to solve a problem having N unknowns in O(N) operations
[8]. The multigrid solver employed incorporates a Full Approximation Storage (FAS) algorithm that makes
use of the solution calculated on coarser grids to reduce the error on �ner grids; the FAS algorithm is
coupled with a full multigrid (FMG) technique, designed to avoid possible divergence due to a poor initial
solution [8]. The succession of �ner grids employed, denoted by Gk (with k = 0, 1, 2, ...,K), span the solution
domain; the number of nodes in the x and y-coordinate directions on grid Gk is given by nk = Ax2k + 1 with
mk = Ay2k + 1 + 1, respectively, where Ax and Ay are prescribed constants.

The multigrid e�ciency of the solution strategy is improved further by implementing automatic error-
controlled grid re�nement [8] where only areas of highest error are resolved on �ner grids. Variable time
stepping is also utilised by estimating the maximum local truncation error at each time iteration and using
it to determine the size of the next time step; further details of how the local truncation error is calculated
and employed can be found in Gaskell et al.[12].

3.3.1 Grid devolution

While the method of solution described above is particularly streamlined for the problem of continuous �lm
�ow, there is the possibility of improving the e�ciency further when considering the long-time evolution of
an advancing front, since large areas of the computational domain have a known constant �lm thickness.
One approach is to devolve the solution grid in regions where there is no perceptible change in the �lm
pro�le; this is particularly suitable for the consideration of rivulet growth since downstream of the advancing
front the thickness of the precursor �lm is just h∗ (<< 1) while upstream of it the �lm is fully developed,
that is h = 1. Using this knowledge a criteria for devolution can be constructed based on the gradient of
the solution at the grid devolution start level, Gd (in the work reported here Gd is taken as G0). Should the
gradient be smaller than a speci�ed tolerance then the node is marked for devolution and is excluded from
subsequent calculations for the current time iteration. This creates a dynamically changing computational
domain that is su�ciently large to capture the non-linear behaviour at the advancing front but much smaller
than the original domain size.

Figure 2: The CPU time for a typical time iteration with �nest grid GK , shown for three di�erent adaption
strategies: A) no mesh adaption, B) local mesh re�nement and C) local mesh re�nement together with grid
devolution. This is for `Fluid A' [4] �owing down a substrate inclined at 60o to the horizontal; the coarsest
grid G0 contains 129× 65 nodes and the computational domain is (0, 200)× (0, 100).

4



Figure 3: The re�ned grid structure used in the multigrid solution of thin �lm �ow for a fully wetting liquid
spreading on an inclined substrate with α = 60o when adaption strategies B), shown in (a), and C), shown
in (b), are utilised. The contact line is indicated in white.

4 Results

Results were generated for a liquid having the same properties as `Fluid A' from Johnson et al. [4], a water-
glycerin mixture; that is with density, ρ = 1075 kg m−3, viscosity, µ = 3.11× 10−2 Pa s and surface tension,
σ = 0.069 Pa m. The �ow rate is Q0 = 0.29mm2/s which for inclination angle 50o gives H0 = 0.7 mm. The
�uid is perfectly wetting and the value of the precursor �lm, h∗, is taken as 0.01 [6].

Figure 4: Free surface colour maps of �lm thickness for �lm �ow down a substrate inclined at (a) 20o and
(b) 50o. Note the shift in the x-axis to keep the advancing front central.

4.1 Adaptive multigrid e�ciency

Solutions were found for the case of a perfectly wetting liquid �lm �owing down on a rigid substrate inclined
at α = 60o to the horizontal, the computational domain being Ω = (0, 200)× (0, 100). G0 contained 129×65
nodes, so nk = 128 × 2k + 1 and mk = 64 × 2k + 1; the �nest grid was GK , with local mesh re�nement
active from G2. The CPU time for a typical full multigrid time iteration is shown in Figure 2 corresponding
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to three di�erent adaption strategies: A) no mesh adaption, B) local mesh re�nement and C) local mesh
re�nement together with grid devolution. Figure 2 shows that B) results in a large reduction in CPU time,
an order of magnitude di�erence compared to A), as the re�ned region involving �ner mesh levels contains
many fewer nodes than an equivalent full grid spanning the entire solution domain. A further enhancement
in e�ciency is obtained by employing option C); the removal of unnecessary nodes on all grid levels spanning
the full solution domain is found to save as much as 50% more CPU time per time iteration. This further
improvement is enabled because the number of calculations performed on coarser levels is vastly reduced.

The corresponding evolving �ow pattern obtained with adaption strategies B) and C) is shown for com-
parison purposes in Figure 3 (a) and (b), respectively; the contact line is delineated in white. Note how the
grid re�nes in the region of the advancing front and devolves away from the area of interest. When strategy
A) is employed the full solution grid contains 525, 825 nodes. For the grid shown in Figure 3 (a), strategy
B), the number of nodes has been reduced to 77, 942; when grid devolution is employed in tandem, strategy
C), this number reduces further to 49, 098, see Figure 3 (b), demonstrating quite e�ectively the improved
e�ciency obtained. Grid devolution essentially decreases the size of the active computational domain; in
Figure 3 (b) the e�ective size of this domain is approximately 10% of the original whole.

Figure 5: Wavelength, λ, for the rivulet pattern at the advancing front of a spreading perfectly wetting
thin �lm as extracted from the numerical solutions. Results calculated from a LSA, λLSA, are shown for
comparison purposes.

4.2 Long time rivulet evolution

Figure 4 shows free surface colour maps of the rivulet pattern at the advancing front of a thin liquid �lm for
two di�erent inclination angles; 20o and 50o. The plots highlight the di�erences that result from the change
in inclination angle; for instance the rivulets when α = 50o are thinner, they are also more elongated [13].
Also worth noting is the change in shape between the di�erent scenarios, at the lower inclination angle the
advancing front is more saw-tooth shaped, as the inclination angle is increased the rivulets become thin and
more �nger-like.

The wavelength, λ, varies in accordance with the width of the rivulets; wavelength is measured as the
average distance between the tips of adjacent rivulets across the advancing front. There are a higher number
of rivulets, thus a smaller wavelength, at high inclination angles; the rivulets are wider at lower inclination
angles and the wavelength lengthens. Figure 5 shows the wavelength extracted from numerical solutions
for a range of inclination angles up to the vertical. For comparison purposes, the result associated with a
corresponding linear stability analysis (LSA), derived as in [5], is also plotted on Figure 5. The predicted
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Figure 6: Free surface colour maps of �lm �ow down a substrate inclined at 50o showing the evolution of
the advancing front, at four di�erent instants of time. Note the shift in axis position to keep the rivulets in
central view.

wavelength from the LSA, λLSA, is calculated from the fastest growing wavenumber; while there is reasonable
agreement at high inclination angles the same is much less favourable at low values of α.

During the evolution of the advancing front neighbouring rivulets show a tendency to merge into one
another if they form in close proximity; this is clearly demonstrated for the evolution of the advancing front in
Figure 6. The shape and dynamics of the rivulet pattern changes as it advances; merging rivulets accelerate
ahead of the bulk of the �ow as the capillary ridge, a characteristic feature of an advancing front, increases
in height leading to a faster growing rivulet.

5 Conclusion and Future Work

The advancing front of a perfectly wetting thin liquid �lm spreading on a rigid, inclined substrate develops
rivulets that grow ahead of the bulk of the �uid, the dynamics of which are considered computationally via
an e�cient multigrid method of solution that incorporates automatic, error-controlled local mesh re�nement
and time-stepping. The method is further enhanced by the introduction of a complementary grid devolution
strategy. As a whole the methodology is found to be be well suited to generating long-time solutions of the
associated problem.

Numerical results revealed the e�ect of inclination angle on long-time rivulet formation; the shape, length
and width of the rivulets all depending on the steepness of the substrate. An interesting feature of the �ow,
the coalescence of neighbouring rivulets, is also observed.

The robustness of the solution strategy provides the opportunity to extend it to problems involving
additional physical e�ects or a parameter range that would be signi�cantly more di�cult to control in an
experimental environment, such as the case of a partially wetting liquid or the introduction of surface tension
gradients.
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