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Abstract: The problem of gravity-driven film flow over trench topography is investigated via
novel solutions of the governing three-dimensional Navier-Stokes system of equations based on a
finite element formulation, with the free surface parametrisation employing the method of spines.
The resulting numerical analogue is solved using a parallel multifrontal method together with a
memory-efficient out-of-core storage approach. Adopting this methodology allows simultaneous
exploration of the internal flow structure/topology and the associated free-surface disturbance
generated in terms of the geometry of the trench and the presence of inertia. Comparisons are
drawn with the corresponding free-surface disturbances predicted using a model based on the
long-wave approximation.
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1 Introduction

The deposition of thin, liquid films onto naturally-occurring and functional surfaces is ubiquitous throughout
engineering, scientific and technological applications; see e.g. the recent review by [1]. Examples from nature
include the control of disease in plants, [2], and the redistribution of the liquid linings of respiratory systems
[3]. These flows also form an important component of several industrial applications, including the coating of
papers and plastics in the inkjet and photographic industries, [4], direct-write printing of electronic circuits,
[5], and the manufacture of anti-reflective coatings, [6].

The focus of this paper is that of obtaining detailed finite element solutions of the full Navier-Stokes (N-
S) equations for three-dimensional film flow over a rectangular trench topography revealing (i) the internal
flow structure/topology and (ii) the free-surface disturbance generated; the latter are compared to the same
obtained using a model based on the so-called depth-averaged form (DAF), [7], consistent with the well-
known long-wave approximation. Previous numerical studies reporting related finite element solutions of the
N-S equations have been confined to film flow over two-dimensional, spanwise, trench topographies only, see
[8]. Note too, that Stokes solutions for three-dimensional film flow over a hemispheric obstacle and around a
cylindrical occlusion have been reported recently; these were obtained using a boundary element approach,
[9].

The flow problem of interest is formulated in Section 2, while Section 3 outlines the numerical methodology
adopted. Results are presented in Section 4 for the internal flow structure/topology together with the
corresponding free-surface disturbance experienced. Conclusions are drawn in Section 5.

2 Problem Formulation

Consider, as illustrated in Figure 1, the case of steady-state gravity-driven thin film flow down a planar
surface containing a trench topography of depth S0, length LT and spanwise width WT , that is inclined at
an angle θ( 6= 0) to the horizontal. The liquid is assumed to be incompressible and to have constant density,
ρ, dynamic viscosity, µ, and surface tension, σ. The chosen Cartesian streamwise, X, spanwise, Y , and
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normal, Z, components of the coordinate vector, X = Xi + Y j + Zk, are as indicated; i, j, k are the
corresponding basis vectors of the coordinate system. The solution domain is bounded from below by the
surface containing the trench, Z = S (X,Y ), from above by the free surface, Z = F (X,Y ), upstream and
downstream by the inflow, X = 0, and outflow, X = LP , planes, respectively, and to the left and right by
the side planes at Y = 0 and Y = WP . The resulting laminar flow is described by the Navier-Stokes and
continuity equations (referred to subsequently as the N-S system of equations), namely:

ρU · ∇U = −∇P +∇ · T + ρG, (1)

∇ ·U = 0, (2)

where U = Ui+ V j +Wk and P are the fluid velocity and pressure, respectively; T = µ
(

∇U + (∇U)
T
)

is the viscous stress tensor, G = G0 (i sin θ − k cos θ) is the acceleration due to gravity where G0 is the
standard gravity constant.

Taking the reference length scale in all directions to be the asymptotic, or fully developed, film thickness,
H0, and scaling the velocities by the free-surface (maximum) velocity apropos the classic Nusselt solution,
U0 = ρG0H

2
0 sin θ/2µ and the pressure (stress tensor) by P0 = µU0/H0, equations (1) - (2) can be rewritten

in non-dimensional form as:
Reu · ∇u = −∇p+∇ · τ + Stg, (3)

∇ · u = 0, (4)

where x = xi+yj+zk, u = ui+vj+wk, p, τ and g = G/G0 are the non-dimensional coordinate, velocity,
pressure, viscous stress tensor and gravity component, respectively. Re = ρU0H0/µ is the Reynolds number,
Ca = µU0/σ is the capillary number and St = ρG0H

2
0/µU0 = 2/ sin θ the Stokes number.

Figure 1: Schematic diagram of gravity-driven film flow over a well-defined trench topography, showing the
coordinate system adopted and surface geometry.

The general problem definition is complete following the specification of appropriate no-slip, inflow/outflow,
kinematic and free-surface normal and tangential stress boundary conditions:

u|z=s = 0, (5)
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h|x=0 = 1, u|x=0,lp;y=0,wp
= z (2− z) i, (6)

(n · u) |z=f = 0, (7)

−p|z=f + (τ |z=f · n) · n =
κ

Ca
, (8)

(τ |z=f · n) · t = 0, (9)

where h, s, f together with s0, lt, wt, lp and wp correspond to their dimensional counterparts,

n =
(

−∂f
∂x i−

∂f
∂y j + k

)

·

[

(

∂f
∂x

)2

+
(

∂f
∂y

)2

+ 1

]

−1/2

is the unit normal vector pointing outward from the

free surface, t =
[

αti+ βtj +
(

αt
∂f
∂x + βt

∂f
∂y

)

k
]

·

[

α2
t + β2

t +
(

αt
∂f
∂x + βt

∂f
∂y

)2
]

−1/2

is the unit vector tan-

gential to the free surface and κ = −∇ · n is twice the mean curvature of the free surface that is taken to
be positive when the surface is concave upwards. αt and βt are variables that define the direction of the
tangent vector at any point in the tangent plane; thus equation (9) actually implies two boundary condi-
tions. For convenience the coordinate system placed at the centre of the topography, (xt, yt), is denoted
as: (x∗, y∗) = (x− xt, y − yt). The spanwise symmetry of the topography is exploited enabling the govern-
ing N-S equations to be solved over half of the solution domain only by imposing the following boundary
conditions at the symmetry plane:

∂u

∂y
|y∗=0 = v|y∗=0 =

∂w

∂y
|y∗=0 =

∂p

∂y
|y∗=0 =

∂h

∂y
|y∗=0 = 0. (10)

3 Method of Solution

The full N-S system of equations, (3) and (4), subject to the boundary conditions, (5) to (10), is solved
using an appropriate finite element formulation, a complicating feature being the presence of a bounding
free-surface, whose shape and position are not known a priori. In line with the underpinnings of the finite
element method, the unknown velocity, pressure and grid coordinate fields are expanded in terms of basis
functions:

u =

ni

∑

i=1

uiφi, p =

nj

∑

j=1

pjψj , x =

ni

∑

i=1

xiφi, (11)

where i ∈
[

1, ni
]

, j ∈
[

1, nj
]

, ui = uii+vij+wik, pj and xi = xii+yij+ zik are the unknown nodal values
of the velocity, pressure and coordinate fields, respectively; ni is the total number of u/x-nodes and nj is the
total number of p-nodes; φi are basis functions for u/x and ψj are basis functions for p. V10/P4/X10 (10
u/x-nodes and 4 p-nodes) tetrahedral elements are used with a ’mixed-interpolation’ formulation employing
linear basis functions for pressure and quadratic basis functions for velocities and mesh coordinates, [10],
satisfying the so called LBB stability condition.

A popular Bubnov-Galerkin weighted residual formulation is employed for the discretisation of equations
(3), (4) and (7) over the problem domain, Ω, and the free-surface:

∫

Ω

[

(−Reu⊗ u− pI + τ )∇φi − Stgφi

]

dΩ+
1

Ca

∫

f

[

∇φi − n (n · ∇φi)
]

df = 0, (12)

∫

Ω

∇ · uψjdΩ = 0, (13)

∫

f

(n · u)φkdf = 0, (14)

where I is the unity tensor, ⊗ denotes dyadic product of two vectors and k ∈
[

1, nk
] (

nk < ni
)

are the free-
surface u/x-nodes; application of the divergence theorem has lowered the order of spatial derivatives and the
remaining boundary conditions (5) - (10) have been incorporated. The spine method, [11], is used to relate
the positions of the Lagrangian mesh nodes, xi, to a set of free-surface parameters called spinal distances,
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hk, whose values determine how the mesh changes in response to the moving free-surface boundary:

xi = xb
i +∆i,khkdi, (15)

where xb
i and di are the fixed base nodes and fixed direction vectors of the spines, while ∆i,k is Boolean

matrix, whose elements are 1, if the global node i lies on the spine k, and 0, otherwise.
The integrals (12) to (14) are calculated numerically using symmetric Gaussian quadrature. The no-slip

and inflow/outflow boundary conditions, (5) and (6), are imposed by replacing the corresponding weighted
residual momentum or kinematic boundary equations with the desired velocity or spine value there. The
Nusselt velocity and pressure profiles are chosen as initial approximations for the velocity and pressure fields,
respectively; the initial approximation for the spine heights is taken to be the one corresponding to a flat
free-surface profile. For two-dimensional flow, streamlines are found by contouring the streamfunction, in
three-dimensions fluid flow trajectories are obtained by integrating along path lines using the Matlab 7.9
streamline function.
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Figure 2: A typical irregular finite element grid comprised of tetrahedral elements for three-dimensional thin
film flow over a localised trench topography with lt = wt = 2 and s0 = 0.5. For illustration purposes the
number of elements in the half solution domain is set to 6× 32× 16× 8 and 6× 8× 4× 10 outwith and over
the trench, respectively.

Accurate and fast solutions to large three-dimensional free-surface problems can only be achieved via a
parallel computing strategy. Thus the system of discrete equations (12) - (14) is linearised by the Newton-
Raphson method with the Jacobians evaluated analytically and solved using a parallel multifrontal method,
that is a variant of Gaussian elimination initially developed for indefinite sparse symmetric linear systems by
[12] and then extended to unsymmetric matrices, [13]. A widely used and efficient parallel implementation
of the method from the MUltifrontal Massively Parallel sparse direct Solver (MUMPS) is employed, which
is written in Fortran 90 with a C interface and invokes the well-known memory distributed parallel message
passing interface (MPI) protocol, see [14].

Solution via the multifrontal method is comprised of three steps. The first is the analysis step involving
the partitioning of the computational domain and computation of an efficient assembly tree; here the analysis
stage is performed using an efficient multilevel nested dissection algorithm provided within a parallel routine
of the ParMETIS implementation, see [15]. The second step is the factorisation step and proceeds by
performing a succession of partial factorisations of small dense matrices called ’frontal matrices’, that are
associated with each node of the assembly tree, see [12, 13] for more detail. The final, third step is the
solution step based on performing forward elimination and backward substitution for the factors obtained
and the right-hand-side.

The multifrontal method requires a large amount of memory, that can be much larger than the physical
(in-core) memory available on the system thus out-of-core memory is required as well, see [16]. This approach
assumes that only the frontal matrices are held in main memory while the factors, which are accessed only
during the final solution step, can be held in direct-access files stored on the hard drive; it allows much larger
problems to be considered and reduces memory usage significantly (by a factor 5 to 10 on 1 to 4 processors,
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and a factor around 2 on 16 to 128 processors). In addition in a parallel context, increasing the number of
processors, and therefore available physical memory, can help keep large frontal matrices in-core.

Typically 2 or 3 Newton-Raphson iterations are required to reduce the norm of the residuals to below
10−6 with the Jacobians calculated analytically. The number of elements in the mesh was systematically
increased until the maximum change in the predicted free-surface profiles on consecutive meshes became less
than 0.05%. As a result an irregular finite element grid arrangement was employed with elements mainly
concentrated near to but especially inside the topography in order to capture the associated eddy structure
present, see Figure 2.

4 Results

The associated hydrodynamic stability limit for a gravity-driven thin film flowing down a flat inclined sub-
strate, [17] and [18], is adhered to by taking a substrate inclination angle of θ = 7◦ requiring the Reynolds
number to be less than Recrit =

5
4
cot θ ≈ 10.2 for the free-surface flow to be considered strictly stable. A

rectangular trench topography with lt = 2, s0 = 1, lp = wp = 550, xt = 195, yt = 225 and Ca = 0.001 is
considered.

Figure 3 provides a plot of CPU time dependence as a function of the mesh density (for four different
numbers of processors) and one of speed-up dependence on the number of processors (for two problems of
different size) taking flow over a square trench, lt = wt = 2 and Re = 10 as a benchmark; the computations
were performed on the advanced research computing parallel computer (ARC1) at the University of Leeds,
with distributed memory architecture and fast switching. This machine has multiple hardware configurations;
the one used in the present work utilised multiple nodes, each with 8 cores and 12Gb of in-core memory
(1.5Gb/core). As seen from Figure 3a, the computational complexity of the algorithm is almost independent
on the number of processors with the number of operations required for the calculation having almost a
linear dependence on the total number of degrees of freedom: O(DOF1.25). Figure 3b, indicates that the
parallel performance and scalability is relatively good in each case with better speed-ups obtained for the
coarse mesh problem having DOF = 16413 (2760 elements). Nevertheless, for the finer mesh problem, with
DOF = 108909 (21600 elements), even when 16 processors are used a relatively large speed-up of 12.5 is
achieved. All of the results discussed subsequently were obtained using 8 processors and DOF = 794373
(172800 elements), ensuring the availability of sufficient in-core memory the calculations to be completed
within a matter of hours.
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Figure 3: CPU time dependence on mesh density (left) and speed-up dependence on number of processors
(right) taking flow over trench topography with lt = wt = 2, s0 = 1, Re = 10, Ca = 0.001 and θ = 7◦ as a
benchmark.

In order to reveal the nature of the internal flow structure/topology, trajectories into and out of the flow
domain are presented in Figure 4. The trajectories shown enter slightly above the trench at z = 0.03 and

5



0

0

(a)
Re=0
Ca=0.001
l
t
=2

w
t
=1

0

0

(b)
Re=10
Ca=0.001
l
t
=2

w
t
=1

0

0

(c)
Re=0
Ca=0.001
l
t
=2

w
t
=2

0

0

(d)
Re=10
Ca=0.001
l
t
=2

w
t
=2

0

0

(e)
Re=0
Ca=0.001
l
t
=2

w
t
=3

0

0

(f)
Re=10
Ca=0.001
l
t
=2

w
t
=3

Figure 4: Three-dimensional structure of the flow, obtained by integrating along the path lines, over a
localised rectangular trench topography with lt = 2, s0 = 1, Ca = 0.001 and θ = 7◦: wt = 1 (top), wt = 2
(middle) and wt = 3 (bottom); Re = 0 (left) and Re = 10 (right). Starting positions are denoted as
filled circles located slightly above the trench at z = 0.04 and close to the free surface at z = 0.8. For
illustrative purposes different colours are used for trajectories corresponding to different starting positions.
The symmetry mid-plane through the centre of the trench is on the left hand side; the closed side of the
trench is on the right. The arrow shows the direction of flow.
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Figure 5: Comparison of predicted (N-S, left and DAF, right) three-dimensional free-surface plots for flow
over a square localised trench topography with lt = wt = 2, s0 = 1, Ca = 0.001 and θ = 7◦: Re = 0 (top)
and Re = 10 (bottom). The arrow shows the direction of flow.
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Figure 6: Predicted (N-S and DAF) streamwise (left) and spanwise (right) free-surface profiles through the
centre of the localised rectangular trench topography of Figure 5, for the case Re = 0 and 10.
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close to the free surface at z = 0.8, their upstream starting positions denoted as filled circles. For the sake
of clarity, different colours are used to denote path-lines emanating from different starting points. It can be
seen that the flow trajectories are greatly affected by the trench geometry and the presence or otherwise of
inertia. For example, when Re equals both 0 and 10 and wt = 1 the path-lines starting close to the left hand
symmetry mid-plane (that is, the black and blue trajectories) remain close to the mid-plane. However, this
is not the case when Re = 10 and wt ≥ 2 in which case the trajectories after encroaching into the trench
close to the mid-plane swirl around several times, during which they are laterally displaced away from the
mid-plane to exit the trench close to its right hand side prior to travelling downstream. Another feature of
note is observed when Re = 0; trajectories located close to the side wall of the trench enter it only if the
trench is sufficiently wide enough (see the green trajectory for wt = 3 in Figure 4(e)) otherwise, wt ≤ 2,
these trajectories (see the light-green and pink trajectories in Figure 4(a) and (c)) do not enter the trench.
It can be seen also that for Re = 10, Figure 4(b), (d), (f), the inertia present in the flow tends to straighten
the path-lines making it less likely for them to enter the trench.

Having established the topological features of the flow, Figure 5 shows the free-surface disturbance ex-
perienced by the film as it passes over a square trench topography, lt = wt = 2 as in Figure 4(c) and (d);
shown for comparison purposes are the corresponding free-surface disturbance predictions obtained using the
model of Veremieiev et al [7] based on a long-wave approximation leading to a depth-averaged form (DAF)
of the full Navier-Stokes equations, (3) to (10). Figure 6 shows the corresponding streamwise and spanwise
free-surface profiles through the centre of the trench. It is clear that when the in-plane dimensions of the
trench are small and comparable with the film thickness the results obtained are significantly different; the
DAF solutions lead to a clear overprediction of the associated free-surface disturbances and capillary fea-
tures, especially the location and magnitude of the free-surface depression. For the two methods of solution
to produce comparable results the dimensions of the trench must be approximately s0 ≪ 1 ≪ lt ≈ wt, as for
example in the case of the trench topography used in the experimental study of [20].

5 Conclusions

The flow structure and free-surface disturbance associated with the steady, stable flow of a thin liquid
layer over rectangular trench topography has been explored in terms of detailed numerical solutions of the
governing three-dimensional Navier-Stokes equations. The purpose written formulation involved is based on
a Bubnov-Galerkin mixed-interpolation finite element scheme and parametrisation of the free-surface on the
Arbitrary Lagrangian-Eulerian method of spines. The solution of the associated numerical analogue utilises
a direct parallel multifrontal solver from the MUMPS library and employs a memory-efficient out-of-core
approach for storing matrix cofactors on the hard drive. It is shown that the multifrontal solver provides
near linear speed-up and O(DOF1.25) computational efficiency; however, at the same time is very demanding
in terms of memory. The three-dimensional topology of the flow is investigated and as in the simpler case
of flow over two-dimensional spanwise trench topography, [8], is shown to be dependent on both geometry
and the presence of inertia. Finally, predictions from the model based on the long-wave approximation are
observed to lead to significant discrepancies and unacceptable results when the in-plane dimensions of the
trench topography are small and comparable to the film thickness.
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