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Abstract: A high-order central essentially non-oscillatory (CENO) finite-volume scheme is de-
veloped for the compressible ideal magnetohydrodynamics (MHD) equations solved on three-
dimensional (3D) cubed-sphere grids. The proposed formulation is an extension to 3D geometries
of a recent high-order MHD CENO scheme developed on two-dimensional (2D) grids. The main
technical challenge in extending the 2D method to 3D cubed-sphere grids is to properly handle
the nonplanar cell faces that arise in cubed-sphere grids. This difficulty is solved by considering
general hexahedral cells with trilinear faces, which allow us to compute fluxes, areas and volumes
with high-order accuracy by transforming to a reference cubic cell. The 3D CENO scheme is
implemented within a flexible multi-block cubed-sphere grid framework to fourth-order accuracy,
resulting in a high-order solution method for cubed-sphere grids with unique capabilities in terms
of adaptive refinement and parallel scalability. The high-order method is applicable to the solution
of general hyperbolic conservation laws with, in principle, arbitrary order. The CENO scheme is
based on a hybrid solution reconstruction procedure that provides high-order accuracy in smooth
regions, even for smooth extrema, and non-oscillatory transitions at discontinuities. The scheme
is applied herein to MHD in combination with a GLM divergence correction technique to control
the solenoidal condition for the magnetic field while preserving the high-order accuracy of the
numerical procedure. The cubed-sphere simulation framework features a flexible design based on
a genuine multi-block implementation, leading to high-order accuracy, flux calculation, adaptivity
and parallelism that are fully transparent to the boundaries between the six sectors of the cubed-
sphere grid. The proposed 3D MHD CENO scheme is shown to achieve uniform fourth-order
accuracy on cubed-sphere grids. Parallel domain partitioning and grid adaptivity are achieved on
the 3D cubed-sphere grids using a hierarchical block-based division strategy with blocks of equal
size. Numerical results to demonstrate the high-order accuracy, robustness and capability of the
proposed high-order framework are presented and discussed for several test problems.
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1 Introduction and Motivation
High-performance computational methods for numerically solving conservation laws in domains between
two concentric spheres are highly desirable for computations of global physical processes associated with
geophysical and celestial bodies and the intervening space, which arise in fields as diverse as space physics,
astrophysics, climate and weather modelling, and geophysics. For example, accurate capturing of detailed
flow features in space-physics problems is numerically challenging due to the presence of a wide variety
of temporal and spatial scales on which interesting plasma physics phenomena occur throughout the vast
domains associated with the large-scale space-weather environment. Numerical solutions of the equations
arising in the modelling of these complex flows are computationally intensive and are only feasible on mas-
sively parallel computers [1, 2, 3, 4]. Therefore, numerical algorithms capable of efficiently resolving the
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solution features of these flows and of reducing the time required to obtain numerical solutions of these
problems are an invaluable asset to research communities in the aforementioned fields.

A potential avenue for reducing the computational resource requirements by enhancing solution accuracy
for a prescribed mesh resolution, is to develop algorithms that capitalize on recent advances in high-order
accurate numerical schemes and in quasi-uniform discretizations of spherical shell geometries. Specifically,
for global magnetohydrodynamics (MHD) modelling of space-physics problems, high-order accurate methods
have the potential to significantly reduce the number of grid elements required to discretize the vast com-
putational domains associated with celestial bodies and the intervening space, and cubed-sphere grids are
attractive for describing simulation domains like the domain between the Sun and the Earth. However, the
development of high-order accurate and efficient algorithms for MHD-plasma modelling is challenging due to
the intricate nature of the MHD equations which require careful handling of the divergence-free constraint
on the magnetic field, due to the coexistence of shocks and smooth small-scale flow features, due to the
complexities encountered in the discretization of spherical domains, and due to the difficulty of prescribing
high-order boundary conditions (BCs).

In this paper, we develop a three-dimensional (3D) high-order finite-volume (FV) scheme for hyperbolic
conservation laws on grids with general hexahedral cells. The method is based on the central essentially
non-oscillatory (CENO) method for hyperbolic conservation laws that was proposed by Ivan and Groth for
two-dimensional (2D) grids [5], and was originally applied to the Euler and Navier-Stokes equations on multi-
block adaptive structured grids [5, 6, 7, 8, 9]. More recently, CENO formulations have been considered on
unstructured grids as well [10, 11]. The CENO method is extended in the current work to three dimensions
and general hexahedral cells that may have nonplanar faces. This allows us to apply the method to flow
simulation on 3D cubed-sphere grids, since cells in cubed-sphere grids have two out of six nonplanar faces.
General hexahedral cells are handled by adopting a trilinear description of the nonplanar cell faces, which
allows us to compute fluxes, areas and volumes with high-order accuracy by transforming to a reference cubic
cell. The resulting high-order 3D finite-volume CENO scheme is applied to MHD flows on cubed-sphere grids
by combining it with the generalized Lagrange multiplier (GLM) divergence cleaning method for MHD that
was proposed by Dedner et al. [12], following our recent work on a 2D CENO method for MHD [13]. The
proposed 3D CENO scheme is implemented with fourth-order accuracy in the highly sophisticated parallel
and adaptive 3D cubed-sphere grid simulation framework that we presented in [14, 15], resulting in a 3D
cubed-sphere grid code for conservation laws that is novel in that it provides solution accuracy with order
higher than two uniformly in all three directions. Moreover, our high-order cubed-sphere grid framework
has unprecedented capabilities in terms of adaptive refinement and parallel scalability.

High-order numerical discretizations for MHD space-physics flows must properly handle the solenoidal
constraint for the magnetic field (i.e., ∇· ~B = 0) [16] so as to provide stability to the discrete system of
differential equations and to avoid unphysical plasma transport effects [17]. They must efficiently provide
both solution accuracy and monotonicity even in the presence of large solution gradients and/or discontinuous
solutions (e.g. shocks and contacts) and must maintain positivity of flow parameters such as pressure
and density throughout the computational domain for solutions varying over many orders of magnitude.
These challenging requirements coupled with the additional complexities raised by the treatment of spherical
geometric boundaries have limited the widespread application of high-order methods to MHD space-physics
flows and thus, the benefits of such accurate discretization methods have yet to be explored for this field.

In recent years, cubed-sphere grids have gained increasing popularity for simulating fluid flow in domains
between concentric spheres, first in the area of climate and weather modelling [18, 19, 20, 21, 22, 23, 24],
but more recently also in areas like astrophysics [25, 26]. Very recently, Ivan et al. [14, 15] have proposed
a second-order parallel solution-adaptive computational framework for solving hyperbolic conservation laws
on 3D cubed-sphere grids and applied the formulation to the simulation of several magnetized and non-
magnetized space-physics problems. In contrast to spherical curvilinear coordinates, cubed-sphere grids
(see Fig. 1) are attractive because they offer a nearly uniform covering of the spherical surface, while also
providing logically Cartesian grids in each of the six sectors (or panels) of the grid, which can be exploited
for efficient implementation. Cubed-sphere grids, however, also pose important numerical challenges due to
the grid irregularity and non-trivial connectivity along the boundaries and at the corners of the six sectors of
the grid, thus making the formulation of high-order accurate schemes on these grid constructs more difficult.

In spite of these challenges, high-order spatial discretizations on two-dimensional (2D) cubed-sphere grids
have been successfully formulated for global atmospheric modelling by Ullrich et al. [22] and Chen et al. [24]
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(a) Cross-section of the cubed-sphere grid (b) Illustration of connectivity among root blocks

Figure 1: Three-dimensional cubed-sphere grid with six root blocks (corresponding to the six sectors of
the grid) and depiction of inter-block connectivity. In our approach, the root blocks can be refined in a
block-adaptive way. In panel (b), the block faces are denoted with the initials of the cardinal directions:
North (N), East (E), South (S) and West (W).

based on the finite-volume method (FVM), by Nair et al. [27] and by Levy et al. [28] in the framework of
discontinuous Galerkin (DG) and spectral element methods, and by Cheruvu et al. [29] using spectral finite-
volume transport schemes. Note that all these high-order procedures rely on mapping the governing fluid
flow equations on spherical geometry to a Cartesian reference computational domain using non-orthogonal
curvilinear coordinates for each sector of the cubed-sphere grid. In other work, Colella et al. [30, 31]
have developed a high-order FVM on locally-structured grids and performed preliminary studies regarding
the high-order interpolation of ghost cell values at the sector boundaries of cubed-sphere grids [30]. It
appears that our work is the first to present a numerical scheme on 3D cubed-sphere grids with order of
accuracy higher than two uniformly in all three dimensions. Moreover, we maintain high-order accuracy on
dynamically adaptive grids and in parallel with good scalability.

In the last two decades, several high-order numerical methods for MHD have been proposed in a quest
to formulate accurate, monotone and efficient discretizations that are capable to handle the ∇· ~B constraint
in a proper way and may be applicable to complex geometries. A variety of approaches have been proposed
to handle the ∇· ~B constraint. One option is to employ an elliptic correction scheme, called the “Hodge
Projection”, which essentially projects a vector field onto its solenoidal part [17, 32]. While the elliptic
correction scheme maintains solenoidality up to machine accuracy (in the chosen discretization), it requires a
Poisson equation to be solved at each hyperbolic step. This approach has several drawbacks such as destroying
strict conservation of magnetic field components [33] and difficulties to maintain high-order accuracy and
parallelize the solver. As an alternative, Powell [34] proposed a divergence control method in which source
terms proportional to the divergence of the magnetic field are introduced to provide a numerically stable
way of controlling the errors in the divergence free condition. This modification maintains the hyperbolic
character of the MHD equations, but comes at the cost of conservation, and may lead to incorrect jumps
for problems with strong discontinuities [16]. A third method to control ∇ · ~B is the class of schemes
that fall under the category of ‘constrained transport’ methods, which preserve the solenoidality of the
magnetic field through staggered spatial discretizations [35]. The approach is straightforward to derive and
implement for second-order accurate formulations on regular Cartesian grids. It can be extended with second-
order accuracy to logically Cartesian grids and to triangular or tetrahedral unstructured grids [36, 37], but
extensions beyond second-order [38] and to general polygonal grids are far from trivial. A fourth method
is the generalized Lagrange multiplier (GLM) divergence cleaning method proposed by Dedner et al. [12].
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As in our previous work on a 2D MHD CENO scheme [13], this approach is adopted in the present paper
because it is conservative in the physical quantities and can naturally be used on general grids and with
high-order accuracy.

This paper is organized as follows. The GLM-MHD formulation is described in Sect. 2. A detailed de-
scription of the high-order CENO MHD finite-volume scheme on cubed-sphere grids is provided in Sect. 3. In
Sect. 4, the high-order properties of the proposed procedure are demonstrated with grid convergence studies
based on analytical solutions for several smooth flows. Furthermore, the robustness against oscillations for
flows with shocks is also shown. Concluding remarks are presented in Sect. 5.

2 GLM Formulation of Ideal MHD Governing Equations
In this work, the hyperbolic system of ideal MHD equations is solved using a GLM-MHD formulation [12],
which couples the divergence constraint, ∇· ~B=0, with the induction equation through the introduction of a
new potential variable, ψ. Thus, the system of conservation laws for which the solution is sought here may
be expressed in conservation (or divergence) form as

∂tU + ~∇ · ~F = S + Q , (1)

where U is the conserved variable solution vector, ~F is the system flux dyad, and S and Q are volumetric
source terms. The conserved variable solution vector, U, has the form

U =
[
ρ, ρ~V , ~B, ρe, ψ

]T
, (2)

where ρ is the plasma density, ~V = (Vx, Vy, Vz) is the velocity, ~B = (Bx, By, Bz) is the magnetic field, ρe is
the total energy and ψ is the so-called generalized Lagrange multiplier. The flux dyad, ~F, is given by

~F =



ρ~V

ρ~V ~V + (p+
~B · ~B

2
)
~~I − ~B ~B

~V ~B − ~B~V + ψ
~~I

(ρe+ p+
~B · ~B

2
)~V − (~V · ~B) ~B

c2h
~B


. (3)

In Eqs. (2) and (3) the specific total plasma energy is e= p/(ρ(γ − 1)) + V 2/2 + B2/(2ρ), where p is the
molecular pressure, V is the magnitude of the fluid velocity, and B is the magnitude of the magnetic field.
The term pB=

~B· ~B
2 in Eq. (3) is known as the magnetic pressure.

The numerical source term, S, is due to the GLM-MHD formulation and given by

S =
[

0, ~0, ~0, 0, − c
2
h

c2p
ψ
]T

, (4)

in which the coefficients cp and ch control the amount of diffusion in ψ and the advection speed of the
∇· ~B-cleaning mechanism, respectively. Based on the ratio of ch and cp the transport equation for ψ in
Eqs. (1)-(4) can have a so-called elliptic, parabolic or hyperbolic nature. Moreover, it can be shown [12] that
the coefficient ch determines how fast the divergence of the magnetic field is advected out of the domain,
whereas cp controls its dissipation.

Note that Eqs. (1)-(4) represent the non-dimensional scaled form of the MHD equations following from
the non-dimensionalization described by, e.g., Powell et al. [39] and by Groth et al. [2]. The ideal gas equation
of state p=ρRT is assumed, where T is the gas temperature and R=1/γ is the gas constant. For a polytropic
gas (thermally and calorically perfect), the ratio of plasma specific heats, γ, is a constant, and the specific
heats are given by Cv=1/(γ − 1) and Cp=γ/(γ − 1). Unless specified otherwise, di-atomic gases are used
throughout this paper, which corresponds to γ=7/5=1.4.
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The column vector Q appearing in Eq. 1 generally represents different volumetric sources arising from the
physical modelling of space-physics problems such as sources associated with external gravitational fields.
However, in the current work this source term has been used exclusively for constructing an analytical
solution to the MHD equations by the method of manufactured solutions [40], as described in Sect. 4.2.2.

3 High-Order CENO Scheme for MHD on Cubed-Sphere Grids
High-order solutions of Eqs. (1)-(4) are sought in three spatial dimensions by extending the 2D CENO-GLM
high-order MHD scheme proposed in [13] and implementing it into the parallel multi-block solution-adaptive
cubed-sphere grid computational framework described in [14, 15]. While the description in this section is for
MHD on cubed-sphere grids, the proposed high-order 3D CENO method and our implementation work for
general hyperbolic conservation laws and on general grids with hexahedral cells.

Three-dimensional cubed-sphere grids are obtained in our framework by overlaying a sequence of concen-
tric 2D spherical shell grids in the radial direction and forming six three-dimensional sector blocks, each of
which is enclosed by the union of four radial and two spherical faces (see Fig. 1). An angularly equidistant
mapping [18] is used to generate the initial grids of the six adjoining grid sectors (or panels) that seamlessly
cover each of the 2D spheres. In contrast to flows on 2D cubed-sphere grids, for which a curved coordinate
system is normally defined on each of the six cubed-sphere sectors, the 3D cubed-sphere grid in princi-
ple allows the use of a unique coordinate system (e.g., Cartesian) to discretize the governing conservation
laws everywhere in the physical domain, which makes unnecessary the usage of a covariant transformation
[18, 22, 41, 42] to map vector fields from the curved coordinate system to the Cartesian system.

However, when using a single global coordinate system the handling of the cubed-sphere discretization in
the 3D physical space requires the numerical scheme to be applied on general hexahedral cells. Specifically,
each cubed-sphere grid cell in physical space has only the four radial faces as planar quadrilaterals (i.e.,
all face vertices lay in one plane) whereas the two spherical faces, each defined by four vertices laying
on a sphere, are nonplanar. Consequently, to obtain high-order accuracy on these control volumes the
nonplanar faces must be carefully treated with regard to all geometric operations affecting the numerical
procedure such as flux integration and calculation of geometric properties (e.g., area, volume, centroid,
moments etc.). Our proposed solution is to define general hexahedral cells with trilinear faces, which allows
us to perform all geometric computations with high-order accuracy by transforming to a reference cubic
cell, as discussed in Sect. 3.3. Note that the second-order accurate cubed-sphere discretization employed in
our former work [14, 15] used a triangulation-based representation for nonplanar faces which was relatively
simple, computationally efficient, and sufficiently accurate to provide second-order accuracy. While the
extension to high-order accuracy is still possible based on triangulating the interior nonplanar faces, the use
of a standard trilinear face representation [43] has significant advantages when the required number of flux
integration points is taken into account and when the water-tightness of inter-cellular faces positioned at
mesh resolution changes in an adaptive mesh refinement (AMR) approach is considered (see Sect. 3.4 for
details). On the other hand, the usage of trilinear-based hexahedral elements increases the complexity of
the implementation and the arithmetic intensity of handling the geometry, especially for high-order accurate
schemes, and therefore, careful algorithmic choices must be made to provide relatively efficient high-order
implementations.

The hybrid CENO FVM for conservation laws that was proposed by Ivan and Groth [5, 6, 9] is used to
discretize the governing equations on the general hexahedral computational grid elements described above.
The hybrid CENO procedure uses the multidimensional unlimited K-exact reconstruction of Barth [44]
in smooth regions and reverts to a limited piecewise-linear reconstruction algorithm in regions deemed as
non-smooth or under-resolved by a solution smoothness indicator [5], thereby providing monotone solutions
near discontinuities. In contrast to other ENO and weighted ENO formulations, the high-order CENO
procedure can be extended efficiently and relatively-easily to non-orthogonal 3D grids and large systems of
conservation laws due to the use of a fixed multidimensional stencil approach. Taking the same approach as
in our previous work on high-order CENO for 2D MHD [13], the 3D MHD CENO algorithm is applied to each
solution variable of the modified ideal MHD system Eqs. (1)-(4) to obtain a high-order MHD discretization.

The 3D MHD CENO scheme outlined above is implemented in a 3D multi-block cubed-sphere grid sim-
ulation framework [14, 15] which has dynamic adaptive refinement capabilities and high parallel scalability,
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Figure 2: Cubed-sphere grid with 48 equal-size blocks, five of which have been removed. The grid was
obtained by dividing each of the initial six blocks into 8 blocks of higher resolution and equal number of
cells.

using blocks of equal size. These features have been used in this work to perform the parallel domain par-
titioning of 3D cubed-sphere grids. Figure 2 illustrates how each of the six initial blocks of a cubed-sphere
grid has been divided into 8 blocks of higher mesh-resolution and equal number of cells, thereby generating a
final computational cubed-sphere grid with 48 blocks. Thus, parallel high-order numerical simulations with
up to 24,576 blocks have been carried out in this work by applying the AMR procedure.

The remainder of this section provides a brief summary of the multi-block cubed-sphere grid followed by
a detailed description of the high-order spatial discretization.

3.1 Multi-Block Cubed-Sphere Grid with Unstructured Root-Block
Connectivity

The 3D cubed-sphere grid simulation framework used in this work is based on a genuine multi-block imple-
mentation that was initially developed by Gao and Groth [45, 46] for reacting flows and was later extended
and optimized for cubed-sphere grids and space-physics flows by Ivan et al. [14, 15]. The computational
framework allows for unstructured connectivity between root blocks, which is one of the primary non-
standard technical elements that has permitted the handling of cubed-sphere grids. This requirement can be
seen by noting in Fig. 1(a) that at the projection of the cube corners (i.e., where the sector edges intersect)
three root blocks meet, and as a result, the root-block connectivity of the cubed-sphere multi-block grid is as
depicted in Fig. 1(b). Furthermore, the computational framework allows for mesh adaptation accomplished
by the dividing and coarsening of appropriate solution blocks, as described in [14, 15, 45, 46]. The prelim-
inary numerical tests in the current work do not take advantage yet of the full dynamic AMR capability
of the computational framework, but use only the refinement feature to generate many solution blocks for
large-scale parallel simulations.

In the adaptation process a grid hierarchy gets generated from a set of initial (i.e., root) blocks in the
form of a sequence of nested grids that can be conveniently tracked with a flexible hierarchical block-tree data
structure. The connectivity among blocks that are neighbours in physical space can easily be established using
the information stored in the hierarchical octree data structure. The orientation of index axes in adjacent
blocks (i.e., the orientation of i, j, and k indices in the logically Cartesian data structure of neighbouring
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(a) Compact view of a cubed-sphere grid and depiction of
cells participating in reconstruction stencils in different re-
gions. The data from the cells residing on different blocks
than the reconstructed cell is locally reproduced by using
overlapping layers of ghost cells, as shown in (b).

(b) Exploded view of the cubed-sphere grid shown in (a)
illustrating two ghost cell layers for one block and the actual
cells forming the reconstruction stencils. The interior cells
marked with shaded grey are the cells from adjacent blocks
which have their data duplicated in the ghost cells.

Figure 3: Examples of interior, boundary and corner stencils formed with the first neighbours for different
cells of a cubed-sphere mesh with six 12×12×8 blocks and a total of 6,912 cells. The cell of which the
solution is reconstructed is marked with a • symbol and the neighbouring cells that are part of the stencil
are marked with ×, ♦ and ⊗ symbols for the interior, boundary and corner stencil, respectively.

blocks in physical space) is efficiently stored in compact form as a three-component transformation array.
These transformation arrays provide a convenient short-hand notation for the transformation matrices [47,
45, 46] describing the relation between indices of two adjacent blocks, which can be used to exchange solution
information between blocks having common interfaces in a general and transparent way. More details about
the transformation arrays for the particular case of cubed-sphere grids are given in [15].

The main technical difficulty in applying the block-structured adaptive multi-block concept to cubed-
sphere grids is to deal transparently with the unstructured connectivity between adjacent blocks that occurs
at sector boundaries and sector corners. A first technical solution is to use block-to-block transformation
arrays in the solution procedure, as noted above, to properly compute numerical fluxes across the block
boundaries (via the ghost cell and reconstruction mechanisms, see below). However, a second issue arises at
sector corners (see Fig. 3): grid cells adjacent to one of the eight sector corners have only seven neighbour-
ing cells (in 2D), while all other cells have 8 neighbours (these neighbours are used in stencils for solution
reconstruction and flux calculation, see the next sections). This issue is dealt with in our approach by
automatically detecting blocks with such corner cells, and by assigning “collapsed” corner ghost cells to
those blocks sharing the relevant corner (as in [46]). In practice, this is implemented by marking these col-
lapsed ghost cells, assigning them dummy values, and not including them in the stencils for reconstruction
computation, so grid cells adjacent to sector corners employ reduced stencil sizes. The flexible multidi-
mensional finite-volume reconstruction mechanism of our high-order solution method (see Sect. 3.3) handles
this transparently without reducing the local order of accuracy by permitting variable stencil sizes. In our
implementation, blocks with collapsed ghost cells are detected from the block connectivity data structure:
if no neighbouring block is found in the direction of a block corner the corresponding corner ghost cells are
taken to be collapsed.
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3.2 Semi-Discrete Finite-Volume Formulation
The semi-discrete integral form of the finite-volume formulation applied to Eq. 1 for a hexahedral computa-
tional cell I(i, j, k) of a three-dimensional cubed-sphere grid is given by

dUijk

dt
=

1

Vijk

−∮
∂Vijk

~F · ~nd�a� +

∫∫∫
Vijk

(S + Q) d�v

 , (5)

where Uijk= 1
Vijk

∫∫∫
Vijk Ud�v is the solution state of mean conserved variables and ∂Vijk is the boundary of

the control volume, Vijk, of cell I, which has a volume equal to Vijk. In Eq. 5 the Gauss divergence theorem
has been applied to convert the volumetric flux integral to a surface integration over the boundary ∂Vijk.
Equation 5 can be further manipulated to get the following semi-discrete form for approximate averages Uijk

dUijk

dt
=− 1

Vijk

6∑
f=1

Ng∑
m=1

(
ω̃~Fnum · ~n

)
i,j,k,f,m

+
(
S
)
ijk

+
(
Q
)
ijk

=Rijk(U) (6)

by applying a Gauss quadrature integration procedure of variable order of accuracy for the surface integral
over the hexahedral cell. The form given by Eq. 6 separates the spatial and temporal discretizations, which
essentially reduces the system of partial differential equations (PDEs) to a system of ordinary differential
equations (ODEs) in time for each cell. Thus, a high-order numerical approximation to the solution based on
Eq. 6 is obtained by computing the discrete spatial residual, Rijk, with high-order accuracy and advancing
the ODE system in time in an appropriate manner, as discussed in Sect. 3.5.

The numerical flux ~Fnum · ~n in the normal direction is calculated based on the numerical flux function,
~Fnum, and the local normal, ~n, at each of the Ng Gaussian quadrature points used to integrate the total flux
across each face, f , of the hexahedral cell. Note that according to [43] the quadrature locations at which
the fluxes should be evaluated are the images under the trilinear transformation of the Gauss quadrature
points in the reference cube, and the Gauss quadrature weights, ω̃, are the weights in the physical space.
These weights are obtained from the standard Gaussian weights on the reference cube, multiplied by the
local Jacobian of the trilinear transformation, as explained in more detail below. The total number of Gauss
integration points, Ng, at which the numerical flux is evaluated is chosen as the minimum required to preserve
the targeted rate of convergence for solution accuracy. High-order evaluation of the residual requires high-
order local flux evaluation and accurate integration of the average source terms,

(
S
)
ijk

and
(
Q
)
ijk

, which
are obtained by providing accurate approximations of the solution variation over the cell following from
a polynomial solution reconstruction procedure (see next subsection). In general, an order-K polynomial
reconstruction provides an order-K + 1 accurate spatial discretization for smooth problems. More details
about the residual computation are given in Sect. 3.4.

3.3 CENO Reconstruction
High-order solution approximations for the purpose of computing accurate numerical fluxes and volumetric
source terms are determined by extending Ivan and Groth’s CENO reconstruction procedure [5, 6] for 2D
flows to 3D general hexahedral cells and cubed-sphere grids. The CENO reconstruction from [5, 6] is a
hybrid procedure that uses the K-exact piecewise polynomial reconstruction of Barth [44] to provide high-
order accuracy in smooth regions and reverts to a limited linear reconstruction procedure to control solution
monotonicity only in regions deemed as containing non-smooth and/or under-resolved solution content.
Note that a fixed central stencil is used in each of the two reconstruction algorithms, which makes the
routine readily applicable to a variety of computational grids in a fairly-straight forward manner. The
switching in the hybrid procedure is determined based on a solution smoothness indicator that is computed
in each cell for each of the solution variables to determine whether the numerical solution is locally smooth
and well-resolved. To control solution positivity, the reconstruction, smoothness analysis and monotonicity
enforcement have been applied in this work in the way described in [5, 6, 13], in which the primary choice for
performing all these operations is to use the primitive solution variables W =

[
ρ, ~V , ~B, p, ψ

]T
. It is
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Figure 4: A general hexahedral cell in physical space having faces with nonplanar vertices (left) to which
a reference unit cube (right) is mapped by applying a trilinear transformation ~r(p, q, r). Four local unit
normals are also shown for one face of the general hexahedron.

worth noting that the CENO procedure provides a practical compromise between accuracy, computational
efficiency, and robustness that is mostly well-suited for applications having a significant content of smooth
solution variations and only a handful of discontinuities.

3.3.1 Accurate Integration over General Hexahedral Cells using Trilinear Representations

As previously mentioned, to apply the CENO reconstruction to cubed-sphere grids it is necessary to extend
the procedure to hexahedral computational cells that can have faces with nonplanar vertices, as depicted in
Fig. 4. A suitable approach is to consider a consistent geometric representation of the general hexahedral
cell based on the trilinear transformation

~r(p, q, r) = ~A+ ~Bp+ ~Cq + ~Dr + ~Epq + ~Fpr + ~Gqr + ~Hpqr , (7)

where p, q and r are Cartesian coordinates in the canonical space of the reference cube and ~A, ~B, ~C,
~D, ~E, ~F , ~G and ~H are the transformation vector coefficients that are computed by imposing the one-to-
one correspondence between the vertices of the hexahedron and those of the reference cube. Thus, the
trilinear transformation, ~r(p, q, r), given by Eq. 7 [43, 48] assigns to each point (p, q, r) in the reference
cube an image point ~X(x, y, z) in the physical space that is part of the hexahedral cell. Consequently, once
the transformation coefficients are determined, any local or integrated quantities involving the geometry
of the hexahedron (e.g., centroid, volume, face normals, volumetric or face integrals of arbitrary functions,
etc.) can be computed by carrying out the required evaluations within the reference cube [43, 49] and not
in the distorted hexahedral shape. This approach is extensively used in our CENO method to evaluate
all geometry-related quantities required by the solution procedure (see the next sections). The detailed
procedure is summarized below for computation of volumetric integrals, in particular the cell volume, and
the computations for other quantities like cell centroids, face areas, face integrals, etc., proceed analogously.

The volume of a hexahedral cell is defined by V =
∫∫∫
Vijk d�v, where d�v=dxdy dz is the volume element.

The more general procedure of evaluating a volumetric integral of a continuous smooth function, g( ~X), over
a control volume Vijk is discussed here, which recovers the volume calculation for g( ~X) = 1. To evaluate
the volumetric integral, I =

∫∫∫
Vijk g( ~X)d�v, the variables and integration domain are changed to those of

the reference unit cube by making use of the trilinear transformation, ~X=~r(p, q, r), and its transformation
Jacobian determinant, detJ≡

∣∣∣∂(x,y,z)∂(p,q,r)

∣∣∣ [43]. Thus, the volumetric integral, I, is calculated in the canonical
space (p, q, r) as

I =

1∫
0

1∫
0

1∫
0

g(~r(p, q, r)) detJ dp dq dr , (8)
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where the Jacobian detJ=j(p, q, r) is also a function of the location.
The triple integral in Eq. 8 is evaluated numerically by applying Gauss-Legendre quadrature integration

rules [43, 49] of various accuracy orders depending on the solution accuracy targeted in the computation.
For a quadrature rule with Nv volumetric Gauss points, I in Eq.8 is approximated as

I '
Nv∑
m=1

g (~r(pm, qm, rm)) (detJ)m ωm =

Nv∑
m=1

g( ~Xm) ω̃m , (9)

where ~Xm=~r(pm, qm, rm) and ω̃m=(detJ)m ωm represent the Gaussian abscissa and weight in the physical
space. Note that the abscissa ~Xm is the trilinear transformation image of the abscissa (pm, qm, rm) in the
reference unit cube and the weight ω̃m is determined as the product between the local Jacobian and the
corresponding Gaussian weight coefficient ωm. Note also that

(
~Xm, ω̃m

)
depend only on the hexahedral cell

geometry and therefore, they can be stored and reused for volumetric integrations involving different g( ~X)
functions (e.g., calculation of volume, centroid, geometric moments etc.), and this approach has been taken
in the current work to make the implementation more efficient.

For concreteness, calculations based on Eq. 9 of all volumetric geometric properties required by a fourth-
order CENO scheme have been performed in this work with a fifth-order Gaussian integration rule derived
with three points in each canonical direction (i.e., a 3×3×3 product rule [49]) and Nv = 27 volumetric
Gauss points. In this rule, the basic abscissae and weights generated for a [0, 1] domain [50] are [0.5, 0.5 ±
0.3872983346207417] and [0.4444444444444444, 0.2777777777777763, 0.2777777777777763], respectively.

Although the description of integration rules using the trilinear representation of the hexahedral cell
have been illustrated here based on volumetric integrals, it should be clear that a similar approach can be
considered for integration over the hexahedral faces. The particular case of the surface flux integration (see
Eq. 6) is discussed in Sect. 3.4, including the requirements on the number of face Gauss quadrature points.

3.3.2 K-Exact Least-Squares Reconstruction

Following Barth [44], the variation of a solution variable, u, at any location within the hexahedral computa-
tional cell I(i, j, k) assumes the form

uKI ( ~X) =

K∑
p1=0

K∑
p2=0

K∑
p3=0

(p1+p2+p3≤K)

(x− x̄I)p1 (y − ȳI)p2 (z − z̄I)p3 DK
p1p2p3 , (10)

where K is the order of the polynomial function, ~X = (x, y, z) are the coordinates of the position vector at
which the solution is sought, (x̄I , ȳI , z̄I) are the coordinates of the centroid, ~XI , of cell I(i, j, k), and DK

p1p2p3
are high-order polynomial coefficients that will need to be determined for each of the primitive variables for
every cell, based on average solution values, ūijk, within the cell and its neighbours. Although Eq.10 allows
for arbitrary reconstruction orders, the accuracies targeted in this paper use K = 1 and K = 3 to achieve
a second- and fourth-order accurate scheme, respectively. The monotonicity-preserving procedure, which is
briefly discussed in Sect. 3.3.3 (for more details see [5, 6, 7, 9, 13]), reduces K to 1 and applies limiters in
regions of the flow that are deemed under-resolved or to contain discontinuities.

The coefficients DK
p1p2p3 are determined by solving an overdetermined system of equations in a least-

squares sense, fitting the reconstruction polynomial to the averages of the cells that are part of the supporting
reconstruction stencil, which consists of the cell (i, j, k) and a selected number of its neighbouring cells. For a
Kth-order polynomial, the number of coefficients DK

p1p2p3 is given by ND = (K+1)(K+2)(K+3)
6 [6]. Thus, there

are four coefficients to be determined for K=1 or linear reconstruction, ten coefficients for K=2 or quadratic
reconstruction, and twenty coefficients for K=3 or cubic reconstruction. When determining the coefficients
DK
p1p2p3 , it is required that the following conditions be satisfied by the reconstruction procedure: 1) the

solution reconstruction must reproduce exactly polynomials of degree N≤K; 2) the solution reconstruction
must preserve the average value within the computational cell; and 3) the reconstruction procedure must
have compact support. Concretely, for a cell I(i, j, k), the first condition represents the K-exactness property

10



(a) |i|+ |j|+ |k| ≤ Nr (b) 27 first-ring cells plus 6 ex-
tra second-ring cells for a total
of 33

(c) |i|+ |j|+ |k| ≤ (Nr + 1) (d) Complete Nr rings of cells

Figure 5: Examples of several central reconstruction stencils for a cell (i, j, k) ranging in size from 25 to 125
cells that can be used to determine the twenty polynomial coefficients of a cubic reconstruction (K = 3). The
first-degree neighbours of the cell (i, j, k) are shown in green whereas dark red is used for the second-degree
neighbours. The different stencils are described conveniently using a mathematical relation involving the cell
indexes and a selected number of rings, Nr, that is taken equal to two for this cubic reconstruction case.

[44], the second condition implies that the reconstructed polynomial function should recover exactly the cell-
averaged value in cell (i, j, k),

ūijk=
1

Vijk

∫∫∫
Vijk

uKijk( ~X)d�v , (11)

and the third condition refers to the size and locality of the supporting reconstruction stencil [44]. Note that
the notation uKI ( ~X)=uKijk( ~X) is used interchangeably.

The minimum size of the compact stencil is determined by the number of required coefficients, ND, but
in practice, additional neighbours are included to make the reconstruction more robust to mesh irregularities
and solution orientation relative to the grid. Several high-order reconstruction stencils of the types shown
in Fig. 5(a)-(d) have been considered for cubic reconstruction (K = 3). Preliminary analysis regarding
the trade-offs between accuracy and computational efficiency has indicated that the stencil configuration
depicted in Fig. 5(b) is an adequate candidate for cubed-sphere grids, and it has been used for all numerical
simulations in this work. Thus, the current K-exact reconstruction scheme uses a fixed central stencil which
includes a total of 7 and 33 cells for K= 1 and K= 3, respectively, for a regular cell, and smaller, but still
overdetermined, stencils for cells near the sector boundaries on the cubed-sphere grid.

In the reconstruction step for cell I(i, j, k) an overdetermined system AD−B = 0 is solved in the least-
squares sense, together with the constraint of Eq. 11, which is imposed exactly. Here, D is the array of
polynomial coefficients, DK

p1p2p3 , and the equations AD−B = 0 are given by

(AD−B)γδζ =

 1

Vγδζ

∫∫∫
Vγδζ

uKijk( ~X) d �v

− ūγδζ = 0. (12)

There is one equation for each cell J(γ, δ, ζ) in the stencil of cell I(i, j, k). Each equation matches the actual
cell average ūJ in cell J(γ, δ, ζ) with the average over cell J(γ, δ, ζ) of the reconstructed polynomial uKijk( ~X)

for cell I(i, j, k). Equation 11 can be enforced analytically by replacing uKijk with Eq. 10 and expressing the
first coefficient, DK

000, as a function of the other M = ND − 1 polynomial unknowns as

DK
000 = ūI −

K∑
p1=0

K∑
p2=0

K∑
p3=0

(p1+p2+p3 6=0)

DK
p1p2p3 (xp1yp2zp3)I , (13)
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where the geometric moment (xp1yp2zp3)I of powers (p1, p2, p3) is given by

(xp1yp2zp3)I =
1

VI

∫∫∫
VI

(x− xI)p1 (y − yI)p2 (z − zI)p3 d�v . (14)

Substituting uKijk from Eq. 10 in Eq. 12 and using Eq. 13 for DK
000 the following overdetermined linear

system for the M unknowns is obtained

L1

L2

...
LJ
...

LNn


M×Nn



DK
001

DK
002
...

Dp1p2p3
...

DK
K00


Nn×1

−



w1(ū1 − ūI)
w2(ū2 − ūI)

...
wJ(ūJ − ūI)

...
wNn(ūNn − ūI)


M×1

=



0
0
...
0
...
0


M×1

(15)

where Nn is the number of neighbours in the supporting stencil and the generic row LJ of the matrix L for
a neighbouring cell J(γ, δ, ζ) is given by

LJ =
(
wJ

(
x̂0y0z1

)
IJ

wJ

(
x̂0y0z2

)
IJ

. . . wJ

(
̂xp1yp2zp3

)
IJ

. . . wJ

(
x̂Ky0z0

)
IJ

)
, (16)

in which wJ is a geometric weight specific to each control volume J which serves the purpose of improving
the locality of the reconstruction, becoming especially important for stretched meshes with surface curvature
[51]. (In essence, equations corresponding to close-by neighbour cells in the reconstruction stencil get larger
weights in the least-squares solution than neighbour cells that are further away.) The matrix coefficients(

̂xp1yp2zp3
)
IJ

for the pair of I and J cells have the expression

(
̂xp1yp2zp3

)
IJ

=

 1

VJ

∫∫∫
VJ

(x− xI)p1 (y − yI)p2 (z − zI)p3 d�v

− (xp1yp2zp3)I , (17)

where all the quantities
(

̂xp1yp2zp3
)
IJ

can be efficiently calculated using only the (xp1yp2zp3) moments in
the way described in [6].

The solution of the overdetermined linear system Eq. 15 can be obtained using QR factorization or
by multiplication with the pseudo-inverse of L [6, 52]. In each time step, the constrained least-squares
reconstruction problem is solved for each cell and for each primitive variable. Matrix L depends completely
on geometry and is the same for all least-squares problems in a given cell (i, j, k) and for all time steps, so
its inverse can be precomputed and reused to provide a computational speedup (see [5, 6, 9] for details).

3.3.3 CENO Smoothness Indicator to Enforce Monotonicity

As in previous CENO formulations [5, 6, 9, 13], in order to control solution monotonicity throughout the com-
putational domain, the high-order K-exact reconstruction which is deemed non-smooth or under-resolved is
reverted to a limited linear reconstruction (i.e., K-exact reconstruction with K = 1 combined with a limiting
function). In particular, the slope limiter of Venkatakrishnan [53] is used in the limited reconstruction. The
smoothness indicator, S, used to determine whether a flow variable in cell (i, j, k) is deemed under-resolved
or non-smooth, is computed following the same formulation as in [5]:

S =
α

max(1− α, ε)
NSOS −ND
ND − 1

, α = 1−

∑
γ

∑
δ

∑
ζ

(uKγδζ( ~Xγδζ)− uKijk( ~Xγδζ))
2

∑
γ

∑
δ

∑
ζ

(uKγδζ( ~Xγδζ)− ūijk)2
, (18)
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where the ranges of the indices (γ, δ, ζ) are taken to include either the whole or a subset of the supporting
reconstruction stencil for cell (i, j, k). In Eq. 18, ε= 10−8 is introduced to avoid division by zero and NSOS

denotes the size of the stencil used for computing the smoothness indicator which in this work was taken
equal to seven (i.e., only the cell (i, j, k) and its first-degree face neighbours were used). The use of the
smoothness indicator for the purpose of deciding whether or not to revert a K-exact reconstruction follows
exactly the procedure described in [13], including the use of the same cutoff range values.

3.4 High-Order Residual Evaluation for General Hexahedral Cells using
Trilinear Representations

As outlined in Sect. 3.2, the high-order accurate numerical computation of the solution residual, Rijk, in
Eq. 6 requires calculating with high-order accuracy the cell volume Vijk, the net flux through the boundary
of the computational cell (i, j, k) (i.e., a flux surface integral), the average source term

(
S
)
ijk

to the ψ-update
equation (Eq.4), and the average term

(
Q
)
ijk

containing any other volumetric sources. High-order accurate
approximations to these residual constituents are obtained based on the solution state representation, UK

ijk,
with a truncation error of O(∆xK+1) for each flow variable and using a high-order quadrature integration of
a minimum order to preserve O(∆xK+1)-accuracy. Details related to these procedures are discussed next.

As briefly explained in Sect. 3.2, the high-order accurate calculation of the flux surface integral in Eq. 6
uses a Gauss quadrature rule of Ng points to approximate the exact flux through each hexahedron face with
an accuracy of O(∆xK+1). For hexahedron faces described with a trilinear representation (see Eq. 7) the
selection of Ng is dictated by the integration rule over quadrilaterals [49] that has an order of integration at
least equal to the desired order of solution accuracy. Consequently, the practise adopted here is to use one
quadrature point (Ng = 1) for second-order schemes (K= 1) and four quadrature points (Ng = 4) for third-
and fourth-order schemes (K = 2 and K = 3). To calculate the MHD numerical flux, ~Fnum · ~n, at each of
the Ng Gauss quadrature points the procedure outlined in [12, 13] is used. Thus, a local Riemann problem
with the left and right reconstructed solution states, Ul and Ur, as initial data is solved at each point by
decoupling the equations for Bx and ψ from the rest of the system and applying a Lax-Friedrichs numerical
flux function to the other seven MHD variables.

Similarly to the integration of flux surface integrals, high-order quadrature rules of an appropriate order
can be applied to integrate the volumetric sources and calculate the average source terms in the spatial
residual. This approach is used to evaluate the average source term

(
Q
)
ijk

by numerically integrating the

function Q( ~X,UK
ijk( ~X)) over the control volume of cell (i, j, k) followed by division with Vijk. The same

Gauss quadrature rules used for integrating geometric moments (see Sect. 3.3.2) have been used to integrate
this particular source term for the test problems considered in this work. Following Susanto et al. [13], a
different and more efficient approach is taken for the high-order evaluation of the numerical term introduced
by the GLM-MHD formulation,

(
S
)
ijk

. In this case, the linear nature of the term allows for analytical
integration and direct evaluation as a function of the average value ψ̄ijk in cell (i, j, k), and this formulation
is applied in this work. Note that this source term integration is different from the way originally suggested
by Dedner et al.[12]; a detailed description of our approach is provided in [13].

We use ghost cells to impose boundary conditions, with four layers of ghost cells for the 4th-order method,
and two layers for the 2nd-order method. Our current ghost cell boundary implementation is only 2nd-order
accurate, except when we impose the exact solution, in which case we determine the ghost cell averages with
high accuracy using numerical integration of the exact solution in the ghost cells, which gives us fourth-order
accuracy at those boundaries. More general high-order accurate boundary conditions can be obtained by
employing a constraint mechanism at the physical boundaries instead of ghost cells. This has not been
pursued in the current work, but details on this approach in 2D can be found in [5, 6, 13].

Finally, it is worth emphasizing here the significant advantages of using a trilinear representation instead
of triangulating the hexahedral faces. For example, if two triangles were used to represent the nonplanar
faces, not only would it have been necessary to have a selection algorithm to choose the face diagonal
which defines the two triangles but also, more significantly, the number of points required to calculate the
numerical flux [49] would have increased as follows: from one to two (i.e., one for each triangle) for a second-
order scheme, and from four to six and to eight for a third- and fourth-order scheme, respectively. These
simple facts by themselves demonstrate that employing a trillinear representation over triangulation may
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be computationally beneficial. Moreover, the trilinear representation has important advantages when the
water-tightness of inter-cellular faces positioned at mesh resolution changes in an adaptive mesh refinement
(AMR) approach is considered, because a trilinear face can naturally be divided exactly in four smaller
trilinear faces by adding the centroid of the face as an extra grid point. Note that a very desirable property
of the trilinear representation is that the centroid of the hexahedral face which is the image of the reference
face centroid under the trilinear transformation is also the intersection point of the two face diagonals.

3.5 Explicit Temporal Discretization Methods
To obtain steady-state solutions for the problems considered in this work, the coupled system of nonlinear
ODEs given by Eq. 6 is solved using multi-stage explicit time-marching schemes [54] in conjunction with
global or local time steps obeying the Courant-Friedrichs-Lewy (CFL) stability condition. The source term
in the discrete Eq. 6 can in principle influence the stability bound and allowable time step for the ODE
system, but a straightforward analysis shows that it does not limit the allowable time step beyond the usual
hyperbolic CFL condition for the values of ch and cp and the grid resolutions used for the test problems
included in this paper. This was confirmed in all our numerical tests.

3.6 Parallelization with Uniform Treatment of Sector Boundaries and Corners
With the mechanisms of unstructured root-block connectivity and multi-dimensional reconstruction with
flexible stencil sizes in place, parallelization on the cubed-sphere grid can be performed in a way that is fully
transparent to sector boundaries and corners and remains similar regardless of the solution accuracy of the
numerical scheme. The main distinction between different orders of accuracy is in the requirements on the
number of ghost cell layers attached to each solution block. As in [15] and the previous work of Groth et
al., e.g., [5, 7, 46, 55, 56], an efficient domain partitioning is achieved in our implementation by distributing
the active solution blocks equally among available processor cores, with more than one block permitted
per processor core. This approach efficiently exploits the self-similar nature of the solution blocks and
readily produces an effective load balancing. Inter-processor communication is mainly associated with block
interfaces and, for equal-resolution blocks it involves only the exchange of ghost-cell solution values at every
stage of the multi-stage time integration procedure. To improve the efficiency of the parallel communication,
message passing of the ghost-cell values is performed by consolidating inter-processor messages. Blocks
adjacent to grid sector corners feature “collapsed” corner ghost cells, and since there is no neighbour block
associated with the collapsed ghost cells in the data structure, messages are not sent for collapsed ghost
cells. The combination of this scalable domain partitioning and the effective AMR-based block-multiplication
procedure have allowed us to perform efficient parallel high-order calculations on 3D cubed-sphere grids with
in excess of 6,000 computing processor cores. No quantitative assessment of the parallel performance has
been attempted in this work, although previous strong-scaling performance studies carried out with the
second-order formulation of the current cubed-sphere computational framework [15] and with the 2D version
of the high-order CENO [6] suggest that the proposed formulation is capable to achieve high-performance
levels with good scaling.

4 Numerical Results
To demonstrate the capabilities of the proposed high-order CENO scheme described in this paper, numerical
results are presented for solution reconstruction of several analytical functions and for three-dimensional flow
problems governed by the ideal MHD equations. In grid convergence studies based on an exact solution, the
L1, L2, and L∞ norms of the numerical solution error are computed as follows:

L1 = |E|1 =
1

VT

∑
i,j,k

∫∫∫
Vijk

∣∣∣uKijk( ~X)− f( ~X)
∣∣∣d�v , (19)

L2 = |E|2 =

√√√√ 1

VT

∑
i,j,k

∫∫∫
Vijk

[
uKijk( ~X)− f( ~X)

]2
d�v , (20)
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L∞ = |E|∞ = max
i,j,k

(
1

Vijk

∫∫∫
Vijk

∣∣∣uKijk( ~X)− f( ~X)
∣∣∣d�v

)
, (21)

where VT is the total volume of the computational domain, f( ~X) is the exact solution evaluated at point
~X, and the summation is taken over all the interior computational cells.

4.1 Three-Dimensional CENO Reconstructions
Several representative examples of smooth function reconstructions are described now to demonstrate the
accuracy of the CENO reconstruction which lies at the core of the proposed high-order FV scheme. These
reconstruction tests proceed by first computing highly accurate cell averages for a given function, then using
these cell averages to compute high-order polynomial reconstructions in the cells, and finally computing
the error between the original function and the polynomial reconstruction over each cell by high-accuracy
numerical integration over the cell. The order of convergence of this error as grids are refined measures the
order of accuracy of the CENO reconstruction, which determines the order of accuracy of the numerical
simulation method. The discrete initial data in these cases is generated by accurately integrating the exact
solution over cells to obtain the required cell averages using the integration procedure outlined in Sect. 3.3.1
in combination with an adaptive quadrature approach [57].

4.1.1 Reconstruction of Smooth Function on Distorted Meshes for a Rectangular Box Domain

To assess the accuracy of the 3D high-order CENO procedure on meshes containing hexahedral cells with
nonplanar faces, reconstructions of the smooth function f(x, y, z) = (cos(π(y + 1)) − cos(πz))e−π(x+1) on
distorted meshes for a rectangular box domain are compared to the exact solution. The meshes are distorted
in such a way that cell faces are nonplanar. Note that f( ~X) represents a combination of trigonometric and
exponential terms and also occurs in the expression of the exact solution (as Bx of the magnetic field) for a
3D magnetohydrostatic problem proposed by Warburton and Karniadakis [58], and for this reason has been
selected here. Results for the actual flow problem are discussed in Sect. 4.2.1.

The computational domain used for performing solution reconstruction studies is the rectangular box
defined by 0 < x < 1 and −1 < y, z < 1, which is the same domain as that used for the magnetohydrostatic
test case (see Sect. 4.2.1). Given the nature of the geometry, Cartesian (possibly stretched) meshes are, in
general, sufficient for the discretization of such domains, but to test the accuracy of the CENO reconstruction
on general hexahedral cells the interior nodal points have been randomly perturbed as illustrated in Fig.
6(a), giving rise to irregularly-shaped cells with nonplanar faces. The same figure depicts the solution recon-
struction obtained on a structured 3D mesh with eight blocks of 4×8×8 cells and 2,048 total computational
cells using the 4th-order CENO method that is based on a cubic K-exact reconstruction (K=3).

Grid convergence reconstruction studies of the aforementioned f( ~X) function have been carried out with
the 4th-order CENO method on a series of meshes generated with the block-based AMR algorithm, of which
the initial mesh has one block with 4×8×8 cells and 256 total cells and the final mesh obtained after
three refinement levels has 512 blocks and 131,072 total computational cells. As shown in Fig. 6(b), the
expected theoretical asymptotic convergence rate of the 4th-order accurate method is achieved in all error
norms. As the mesh is refined, the slopes of the L1-, L2-, and L∞-error norms approach -4.176, -4.205 and
-4.074, respectively, thereby providing validation for the application of the proposed trilinear-based CENO
reconstruction procedure to general hexahedral cells with nonplanar faces.

4.1.2 Reconstruction of Radially-Modulated Exponential Function on Cubed-Sphere Grids

To demonstrate the spatial accuracy of the high-order hybrid CENO scheme on 3D cubed-sphere grids,
the solution reconstruction of f(x, y, z) = (1 − R + R2)ex+y+z on the computational domain defined by
two concentric spheres with inner and outer radius Ri = 1 and Ro = 3, respectively, is considered next.
The local radius is denoted by R =

√
x2 + y2 + z2. As depicted in Fig. 7(a), this function exhibits a

large smooth variation spanning several orders of magnitude that is oriented along the line connecting two
diametrically-opposed cubed-sphere corners, where the function maximum and minimum occur. Therefore,
this is a good test case for studying how the locally-reduced reconstruction stencil employed by the high-order
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(a) Solution reconstruction obtained on a disturbed mesh
with eight blocks of 4×8×8 cells and a total of 2,048 cells
using a 4th-order CENO reconstruction.

(b) Reconstruction error norms based on the exact solution as a
function of the equivalent number of grid points in one-direction.
N is the total number of grid cells.

Figure 6: Fourth-order (K = 3) CENO solution reconstruction of f(x, y, z) = (cos(π(y + 1)) −
cos(πz))e−π(x+1). The reconstruction is plotted on a mesh with double resolution to illustrate the high-
order nature of the solution reconstruction (left). L1-, L2-, and L∞-error norms for cubic (4th-order) CENO
reconstruction of the function shown in the left panel as a function of the number of computational cells
(right).

(a) Depiction of solution reconstruction, block boundaries and
the computational mesh of one block.

(b) Comparison of L1-, L2-, and L∞-error norms for the
2nd- and 4th-order methods vs. the mesh density.

Figure 7: (a) Solution reconstruction of f(x, y, z) = (1 − R + R2)ex+y+z on a cubed-sphere grid with 384
8×8× 8 blocks and 196,608 cells obtained with the 4th-order (K=3) CENO method; and (b) L1-, L2-, and
L∞-error norms for a 2nd-order (K=1) limited reconstruction and a 4th-order (K=3) CENO approach.

reconstruction approach handles solution extrema occurring at the weak singularities of the cubed sphere
(where the stencil size is reduced).

In this study, the L1, L2, and L∞ norms of the reconstruction error associated with the hybrid fourth-
order CENO reconstruction are compared against the error norms obtained with a second-order limited
K-exact procedure which is based on a linear reconstruction with a stencil of 26 first-degree neighbours.
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Figure 8: Distribution of average L1- and L2-error on a sphere of radius R=2.6 obtained for a cubic (K=3)
CENO reconstruction of f(R) = R−2.5 using a 3D cubed-sphere mesh with radii Ri=2 and Ro=3.5.

The computational meshes used in this grid convergence study range in size from 3,072 to 100,663,296 cells
and have been generated using a block-based AMR procedure in the way described next. In this approach,
the initial six blocks of the cubed-sphere grid have been refined successively to generate 48, 384, and 3,072
solution blocks, depending on the targeted number of computational elements. Following this approach the
first four meshes in the study have been obtained with blocks of 8×8×8 cells, whereas the last two meshes,
both with 3,072 blocks, were generated with blocks of 16×16×16 and 32×32×32 cells, respectively.

The error norms obtained for the two reconstruction procedures on the series of meshes described above
are depicted in Fig. 7(b), which shows that both schemes achieve the theoretical convergence accuracy
in the asymptotic limit. Moreover, it can be observed by inspecting the convergence plot of the 4th-order
reconstruction that the CENO procedure with a cutoff value of 1,500 is able to handle the exponential solution
variation both accurately and robustly: on the first mesh containing only 8×8×8 cells per grid sector, the
function is under-resolved and the high-order CENO procedure avoids creating oscillatory reconstructions
by switching to monotonic piecewise linear approximations with larger errors but maintaining monotonicity,
whereas on more refined meshes the K-exact reconstruction is retained everywhere and the reconstruction
procedure achieves its theoretical accuracy. Thus, the L1, L2, and L∞ norms of the solution error in the
asymptotic limit are -2.068, -2.121 and -2.101 for the 2nd-order reconstruction method and -4.034, -4.055
and -4.081 for the 4th-order CENO reconstruction. The improved accuracy exhibited by the high-order
algorithm translates into significant savings in terms of number of computational cells for a targeted solution
error. For example, even to achieve a modest L1 =10−3 solution error, the 2nd-order method requires about
100,663,296 cells, which is more than 500 times the mesh requirements of the high-order method or 196,608
cells, and this factor increases as the error level becomes lower.

4.1.3 Analysis of Reconstruction Error Distribution on Cubed-Sphere Grids

To assess quantitatively the grid influence on solution accuracy for 3D equiangular gnomonic cubed-sphere
grids, the high-order CENO reconstruction of the spherically-symmetric function f(R)=R−2.5 is performed
on a spherical shell with radii Ri=2 and Ro=3.5. The computational cubed-sphere grid used in this study
consists of six 8×8×8 initial blocks and the analysis of error distribution is carried out on a sphere of radius
R=2.6 in the interior of the domain to avoid effects from the boundary condition implementation. Note that
due to the spherical symmetry of the selected function any non-uniformity in the reconstruction error can
only be attributed to local variations in the grid and to the differences in the selection of the reconstruction
stencil at sector corners of the cubed-sphere grid.

Figure 8 depicts the spherical distribution of local L1- and L2-error norms obtained with a cubic (K=3)
reconstruction on the sphere of radius R = 2.6. The results show a fairly symmetric error distribution
with ±20% relative variation. These plots show that our approach for obtaining high-order accuracy near
the sector boundaries and at sector corners works properly: despite the grid irregularities there and the
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use of smaller stencils at sector corners, high-order accuracy is obtained everywhere on the grid. In fact,
surprisingly, the error we obtain at the grid sector boundaries and corners is somewhat smaller than the error
obtained in the interior of the grid sectors. The same behaviour has been confirmed at other radii as well.
This indicates that the high-order reconstruction procedure is not affected by the grid non-orthogonality and
the reduction in the stencil size near the sector corners, and it suggests that the error is likely mainly dictated
by the local mesh spacing: cells near the sector boundaries and corners are smaller than cells in the middle
of the sectors, which may explain why the error is smaller there. Consequently, this preliminary analysis
indicates that the numerical solution is somewhat better resolved at sector boundaries and corners for the
proposed high-order solution reconstruction, but more detailed studies regarding the influence of different
stencils and mesh densities, and an analysis for full simulations rather than reconstructions, are required
before we can make conclusive statements about the error distribution behaviour on cubed-sphere grids.
Nevertheless, it is clear that high-order reconstruction accuracy is obtained everywhere on the cubed-sphere
grid, including at sector boundaries and corners, and the numerical results in the next section confirm that
global high-order accuracy on the full cubed-sphere grid is also obtained for MHD flow simulations with the
proposed high-order CENO approach.

4.2 High-Order Results for Magnetized Plasma Flows
A set of three-dimensional numerical results demonstrating the accuracy and capabilities of the proposed
high-order CENO finite-volume method on cubed-sphere grids is now described for a range of steady-state
flow problems with MHD plasmas.

4.2.1 Systematic Grid Convergence Studies for a Magnetohydrostatic Test Problem

The first problem to consider is the 3D magnetohydrostatic test case proposed by Warburton and Karniadakis
[58] as an extension to the 2D solution derived by Priest [59]. In this particular magnetohydrostatic problem
the fluid is static (i.e., has zero velocity) and the magnetic field is irrotational. The domain of the problem
is the rectangular box defined by 0 < x < 1 and −1 < y, z < 1. The 3D analytical solution of this flow is
given by

ρ = 1 ,

~V =~0 ,

Bx =(cos(π(y + 1))− cos(πz))e−π(x+1) ,

By = cos(πz)e(−π(y+1)) + sin(π(y + 1))e(−π(x+1)) ,

Bz = sin(πz)(e−π(y+1) − e−π(x+1)) ,

p =5(γ − 1) ,

ψ =0 , (22)

where γ = 5
3 corresponds to monatomic gases. Note that this flow has been used in [58] for performing the

accuracy assessment of a high-order discontinuous Galerkin method.
Following [58], this test has been performed as an initial value problem with the exact solution used to

provide the initial condition and the values for the Dirichlet boundary conditions for all domain boundaries.
Numerical simulations for this problem have been performed with the 4th-order CENO scheme on a series
of Cartesian meshes ranging in size from 4×8×8 to 32×64×64 cells or 256 to 131,072 total cells, respectively,
until the solution reached the steady state. The solution to the total magnetic field, Bt=

√
B2
x +B2

y +B2
z ,

obtained using the 4th-order (K=3) high-order CENO-GLM scheme on a Cartesian mesh with one 8×16×16
block and 2,048 total cells is shown in Fig. 9(a). The L1, L2, and L∞ norms of the error in the x-component
of the magnetic field, Bx, are given in Fig. 9(b). Error measurements in the other components of the magnetic
field, By and Bz, behave similarly to the error of Bx, and for the sake of brevity only the error norms based
on Bx are presented. The results of the convergence study in Fig. 9(b) clearly show that the 4th-order
theoretical accuracy is achieved by the numerical scheme in all error norms in the asymptotic limit, thereby
demonstrating the high-order accuracy of the proposed CENO-GLM formulation for ideal MHD simulations.
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(a) Depiction of the magnetic vector field and its magnitude.
The top-front corner has been removed for allowing the visu-
alization of the interior solution.

(b) Error norm convergence.

Figure 9: (a) Fourth-order (K= 3) CENO-GLM results for the total magnetic field, Bt, for the magneto-
hydrostatic test case on a Cartesian grid with 2,048 cells; and (b) L1, L2, and L∞ norms of the error in the
x-component of the magnetic field, Bx, as a function of mesh density for the 4th-order CENO-GLM scheme.

4.2.2 Systematic Grid Convergence Studies for a MHD Manufactured Solution on
Cubed-Sphere Grids

To assess the accuracy of the high-order CENO finite-volume scheme on cubed-sphere grids, we now present
convergence studies for a 3D steady-state axi-symmetric exact solution of a MHD plasma on a spherical
shell domain flowing outward at supersonic speeds. This test problem has been previously used for accuracy
assessment in [14, 15] and represents an adequate three-dimensional test case for solution accuracy on the
cubed sphere because the 3D cubed-sphere grid is not axi-symmetric. As far as we know, there are no other
non-trivial MHD test problems with an exact solution in a domain between two concentric spheres (except
for problems with rather trivial radial 1D solutions, see [15] for examples).

In this test problem, the exact solution is specified using the primitive variables as [14, 15]

W(x, y, z) =

[
r−

5
2 ,

x√
r
,

y√
r
,

z√
r

+ κr
5
2 ,

x

r3
,

y

r3
,

z

r3
+ κ, r−

5
2

]T
, (23)

and the Lagrange multiplier for GLM-MHD is taken ψ = 0. The exact solution in Eq. 23 gives rise to an
analytical residual in Eq.1, which is assigned to the volumetric source term Q to balance the equations.
This exact solution of a modified set of equations is sometimes called a ‘manufactured solution’ [40]. The
analytically-derived source term can be written as [14, 15]

Q =



0,
1
2xr
− 5

2

(
r−1 − 5r−2 − κz

)
,

1
2yr
− 5

2

(
r−1 − 5r−2 − κz

)
,

1
2zr
− 5

2

(
r−1 − 5r−2 − κz

)
+ 5

2r
− 1

2κ(1 + κrz) + κr−
1
2 ,

~0,
1
2r
−2 + κz(3.5r−1 + 2κz) + (κr)2

2 (7 + 5κrz)


. (24)

As suggested in [15], the perturbation parameter is taken as κ = 0.017 such that the solution has significant
latitudinal variation yet the flow remains supersonic in the whole domain. Note that in this flow the magnetic
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Figure 10: Comparison of L1, L2, and L∞-error norms in solution density vs. mesh size obtained with the
2nd- and 4th-order methods for the manufactured MHD solution.

field is irrotational and aligned everywhere with the velocity.
The computational domain used for this convergence study is defined by inner and outer spheres of

radius Ri=2 and Ro=3.5, respectively. To achieve high-order accuracy for this problem, it is necessary to
provide a high-order approximation to the average source term,

(
Q
)
ijk

, in the numerical residual (Eq. 6) by
integrating the analytical expression of the source term (Eq. 24) with high-order accuracy, as described in
Sect. 3.4. Moreover, high-order boundary conditions must be imposed, which has been achieved in this work
by specifying both the inflow and outflow boundary conditions using the exact solution integrated in ghost
cells with high-order accuracy to determine the ghost cell averages. These ghost cell averages are used to
reconstruct the solution in the ghost cells, and the reconstructed values at the domain boundaries are used
together with an interior solution state to solve a local Riemann problem at domain boundaries, in the same
way as at interior cell boundaries.

Figure 10 compares the error norms in density obtained with the 2nd-order numerical scheme of [14, 15]
with those generated with our 4th-order CENO schemes. A minor difference between the two sets of error
norms is that the errors of the 2nd-order scheme have been calculated by comparing the exact and numerical
solution at the cell centroid, and not by integration as in Eqs. 19-21. The L1, L2, and L∞ norms of the error
were obtained on a series of grids generated using mesh refinement and ranging in size from six 8×8×10 initial
blocks to 24,576 16×16×20 cubed-sphere blocks, which corresponds to 3,840 and 125,829,120 total cells,
respectively. The results depicted in Fig. 10 show that both numerical schemes achieve the theoretical order
of accuracy. As the mesh is refined, the slopes of the L1, L2, and L∞ norms approach in the asymptotic limit
-2.06, -2.10 and -2.05, respectively, for the 2nd-order scheme and -4.04, -4.05 and -4.019 for the 4th-order
(K = 3) scheme. However, the improved solution accuracy exhibited by the 4th-order procedure leads to
4th-order error that is as much as 4 orders of magnitude lower than the error generated by the 2nd-order
scheme. Thus, the high-order discretization manages to generate significant computational savings compared
to the 2nd-order scheme in regard to the number of computational elements required to achieve a target
discretization error, which can represent a factor larger than 500, as can be seen in Fig. 10.

These results clearly demonstrate the capability of the proposed high-order scheme to handle MHD
flow simulations on spherical shell geometries very accurately. It is clear that global high-order accuracy is
obtained on the full cubed-sphere grid with the proposed high-order CENO approach, including at sector
boundaries and corners, despite the grid irregularities and reduced stencil sizes there.
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Figure 11: Cubed-sphere grid formed by only five sectors, for simulation on one side of the sphere. A cut
in the outer spherical geometry allows a better view of the inner spherical cap.

4.2.3 Magnetically Dominated MHD Bow Shock

The robustness of the proposed high-order CENO GLM-MHD scheme on 3D grids with general hexahedral
cells is now tested by considering its application to the simulation of 3D MHD bow-shock flows around a
perfectly conducting sphere. In particular, the inflow parameters used for this problem have been chosen
as in [60] and are ρ = 1, p = 0.2, Bx = 1, By = 0, vx = 1.4943 and vy = 0.1307, which correspond to
an upstream plasma characterized by β = 2p/B2 = 0.4, an Alfvénic Mach number MAx = 1.49 along the
upstream magnetic field lines and an angle θvB = 5◦ between the upstream velocity and magnetic vector
fields. As shown in [60], this particular upstream configuration corresponds to a MHD “switch-on shock”
regime and, thus, gives rise to 3D intermediate shocks and multiple interacting shock fronts.

This test case has been studied previously on cubed-sphere grids by Ivan et al. [14, 15] using a highly-
adapted mesh with 22,693 blocks and 14,523,520 computational cells and a second-order formulation. Sim-
ilarly to [14, 15], the computational domain used for this problem has the 5-sector configuration shown in
Fig. 11, which is defined by two concentric spheres with inner and outer radius Ri=1 and Ro=8, respectively,
and the four back panels of the ‘missing sector’ tilted at 15◦ relative to the Cartesian (y, z) plane.

A 4th-order CENO scheme with a cutoff of 1,500 is used for the simulation of this challenging flow using
a cubed-sphere grid with 320 12×12×24 self-similar solution blocks with a total of 1,105,920 computational
cells. Reflection boundary conditions are imposed at the inner sphere using a ghost-cell formulation, which
can only provide second-order accuracy in this case. Free-stream BCs are applied to the outer boundary and
linear extrapolation BCs are implemented for all variables at the back panels of the outer boundary except
for ψ, which is set to zero (see the discussion in [13] and [61] for more details on boundary conditions for ψ).

Total magnetic field contours are shown in Fig. 12(a), on top of which are superimposed the streamlines
(black colour) and also the magnetic field lines (blue colour). Consistently with the findings in [60], a
secondary shock front is observed following the leading bow-shock front, in agreement with the magnetically
dominated upstream conditions.

Figure 12(b) shows the effect of the smoothness indicator, illustrating the non-uniformity in the order
of polynomial reconstruction (with the cells shown as blue representing high-order reconstruction, whereas
limiters are applied to cells tagged as red). As desired, the flow is flagged as non-smooth in the vicinity
of the shocks. Note that there are also flagged cells close to the obstacle, but this is due to the 2nd-
order boundary conditions. In future work, this will be remedied by implementing 4th-order accurate wall
boundary conditions using the constraint mechanism described in [5, 6, 13].

The contours in Fig. 12(a) close to the shocks do not show any indication of spurious oscillations, and
more detailed investigation of the results (not shown) confirm that no spurious oscillations are generated
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(a) Total magnetic field contour lines. Black lines
represent velocity streamlines, and blue lines are
magnetic field lines.

(b) CENO switching criterion. Cells coloured in red
represent regions of limited linear reconstruction.

Figure 12: (a) Fourth-order CENO-GLM result for the total magnetic field, Bt, on the Cartesian (x, y)
plane at z=0 obtained on a mesh with 1,105,920 cells for the magnetically dominated bow-shock problem;
and (b) corresponding regions in which the CENO scheme uses unlimited cubic (blue) and limited linear
(red) reconstruction for the x-direction magnetic field, Bx.

at the shocks. This illustrates that the 4th-order CENO scheme succeeds in producing 4th-order accurate
results in smooth parts of the flow while preserving monotonicity at shocks on cubed-sphere grids with
general hexahedral elements, confirming our findings for the 2D 4th-order MHD CENO scheme in [13].

5 Conclusion
This paper has presented a 3D high-order CENO finite-volume scheme for hyperbolic conservation laws on
grids with general hexahedral cells. The method is based on the CENO scheme for hyperbolic conservation
laws that has been proposed by Ivan and Groth for 2D grids in [5, 6, 15]. The main technical difficulty in
extending the high-order 2D CENO scheme to general hexahedral cells in 3D is to properly treat hexahedral
cells that may have nonplanar cell faces. In our approach, general hexahedral cells are handled by adopting
a trilinear description of the nonplanar cell faces, which allows for the computation of fluxes, areas and
volumes with high-order accuracy by transforming to a reference unit cube. The resulting high-order CENO
method has been applied to fluid flow problems on 3D cubed-sphere grids, which have hexahedral cells with
two out of six nonplanar faces. The 3D CENO scheme has been used to simulate MHD flows by combining it
with the generalized Lagrange multiplier (GLM) divergence cleaning method for MHD that was proposed by
Dedner et al. [12], following our recent work on a 2D CENO method for MHD [13]. The proposed 3D CENO
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scheme has been implemented with fourth-order accuracy in the highly sophisticated parallel and adaptive
3D cubed-sphere grid simulation framework that we have presented in [14, 15]. Detailed numerical results
that demonstrate uniform fourth-order convergence for smooth flows and robustness against oscillations for
flows with shocks have been discussed. We have also investigated error distributions and have found that
for our approach the numerical error at the corners and boundaries of the six cubed-sphere grid sectors are
not larger than in the interior of the sectors. Our approach maintains high-order accuracy at sector corners
by employing multi-dimensional reconstruction on overdetermined stencils that can have varying size and do
not need to be grid-aligned. To our knowledge, the proposed 3D cubed-sphere grid simulation framework for
conservation laws is the first scheme for 3D cubed-sphere grids with an order of accuracy higher than two in
all three space dimensions. Moreover, our framework maintains high-order accuracy on adaptive grids and
in parallel.

Future research will involve development of accurate high-order boundary conditions using the constraint
mechanism, the full connection of the high-order procedure with the dynamic block-based AMR frame-
work, the coupling with an effective parallel implicit algorithm (see, for example, the methods of Northrup
and Groth [62, 63]), and application of the high-order computational framework to complex space-physics
problems.

Acknowledgements
This work was supported by CSA (Canadian Space Agency) CGSM Contract No. 9F007-080157/001/ST.
Computations were performed on the GPC supercomputer at the SciNet HPC Consortium and on the fa-
cilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca).
The SciNet and SHARCNET consortia are funded by: the Canada Foundation for Innovation under the aus-
pices of Compute/Calcul Canada; the Government of Ontario; Ontario Research Fund - Research Excellence;
and the member institutions of the consortia.

References
[1] W. B. Manchester IV, A. Vourlidas, G. Tóth, N. Lugaz, I. I. Roussev, I. V. Sokolov, T. I. Gombosi,

D. L. De Zeeuw, and M. Opher. Three-dimensional MHD simulation of the 2003 October 28 coronal
mass ejection: comparison with LASCO coronagraph observations. Astrophys. J., 684:1448–1460, 2008.

[2] C. P. T. Groth, D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell. Global three-dimensional MHD
simulation of a space weather event: CME formation, interplanetary propagation, and interaction with
the magnetosphere. J. Geophys. Res., 105(A11):25,053–25,078, 2000.

[3] T. I. Gombosi, K. G. Powell, D. L. De Zeeuw, C. R. Clauer, K. C. Hansen, W. B. Manchester, A. J.
Ridley, I. I. Roussev, I. V. Sokolov, Q. F. Stout, and G. Tóth. Solution-adaptive magnetohydrodynamics
for space plasmas: Sun-to-Earth simulations. Comp. Sci. & Eng., 6(2):14–35, 2004.

[4] C. Jacobs. Magnetohydrodynamic modelling of the solar wind and coronal mass ejections. PhD thesis,
University of Leuven, October 2007.

[5] L. Ivan and C. P. T. Groth. High-order Central ENO finite-volume scheme with adaptive mesh refine-
ment. Paper 2007-4323, AIAA, June 2007.

[6] L. Ivan. Development of High-Order CENO Finite-Volume Schemes with Block-Based Adaptive Mesh
Refinement. PhD thesis, University of Toronto, October 2010.

[7] L. Ivan and C. P. T. Groth. High-order solution-adaptive central essentially non-oscillatory (CENO)
method for viscous flows. Paper 2011-0367, AIAA, January 2011.

[8] Z.J. Zhang and C. P. T. Groth. Parallel high-order anisotropic block-based adaptive mesh refinement
finite-volume scheme. Paper 2011-3695, AIAA, June 2011.

[9] L. Ivan and C. P. T. Groth. High-order solution adaptive central essentially non-oscillatory (CENO)
method for viscous flows. 2012. Submitted.

[10] S. D. McDonald, M. R. J. Charest, and C. P. T. Groth. High-order CENO finite-volume schemes for
multi-block unstructured mesh. Paper 2011-3854, AIAA, June 2011.

[11] M. R. J. Charest, C. P. T. Groth, and P. Q. Gauthier. High-order CENO finite-volume scheme for low-

23



speed viscous flows on three-dimensional unstructured mesh. In Proceedings of the 7th International
Conference on Computational Fluid Dynamics, Hawaii, USA, July 9–13, 2012. Paper ICCFD7-1002.

[12] A. Dedner, F. Kemm, D. Kroner, C-D. Munz, T. Schitzer, and M. Wesenberg. Hyberbolic divergence
cleaning for the MHD equations. J. Comput. Phys., 175:645–673, 2002.

[13] A. Susanto, L. Ivan, H. De Sterck, and C. P. T. Groth. High-order central ENO finite-volume scheme
for ideal MHD. 2012. Submitted.

[14] L. Ivan, H. De Sterck, S. A. Northrup, and C. P. T. Groth. Three-dimensional MHD on cubed-sphere
grids: Parallel solution-adaptive simulation framework. Paper 2011-3382, AIAA, June 2011.

[15] L. Ivan, H. De Sterck, S. A. Northrup, and C. P. T. Groth. Hyperbolic conservation laws on three-
dimensional cubed-sphere grids: A parallel solution-adaptive simulation framework. 2012. Submitted.

[16] G. Tóth. The ∇·B=0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys.,
161(2):605–652, 2000.

[17] J. U. Brackbill and D. C. Barnes. The effect of nonzero ∇·B on the numerical solution of the magne-
tohydrodynamic equations. J. Comput. Phys., 35:426–430, 1980.

[18] C. Ronchi, R. Iacono, and P. S. Paolucci. The "cubed sphere": A new method for the solution of partial
differential equations in spherical geometry. J. Comput. Phys., 124:93–114, 1996.

[19] A. Adcroft, J.-M. Campin, C. Hill, and J. Marhall. Implementation of an atmosphere-ocean general
circulation model on the expanded spherical cube. Mon. Weather Rev., 132:2845–2863, 2004.

[20] W. M. Putman and S.-J. Lin. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys.,
227:55–78, 2007.

[21] A. St-Cyr, C. Jablonowski, J. M. Dennis, H. M. Tufo, and S. J. Thomas. A comparison of two shallow-
water models with nonconforming adaptive grids. Mon. Weather Rev., 136:1898–1922, 2008.

[22] Paul A. Ullrich, Christiane Jablonowski, and Bram van Leer. High-order finite-volume methods for
the shallow-water equations on the sphere. J. Comput. Phys., 229(17):6104 – 6134, 2010. DOI:
10.1016/j.jcp.2010.04.044.

[23] C. Chen and F. Xiao. Shallow water model on cubed-sphere by multi-moment finite volume method.
J. Comput. Phys., 227:5019–5044, 2008.

[24] C. G. Chen, F. Xiao, X. L. Li, and Y. Yang. A multi-moment transport model on cubed-sphere grid.
Int. J. Numer. Meth. Fluids, 67:1993–2014, 2011.

[25] A. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace. Three-dimensional magneto-
hydrodynamic simulations of accretion to an inclined rotator: the "cubed sphere" method. Astrophys. J.,
576:L53–L56, 2002.

[26] P. C. Fragile, C. C. Lindner, P. Anninos, and J. D. Salmonson. Application of the cubed-sphere grid to
tilted black hole accretion disks. Astrophys. J., 691:482–494, 2009.

[27] R. D. Nair, S. J. Thomas, and R. D. Loft. A discontinuous Galerkin transport scheme on the cubed
sphere. Mon. Weather Rev., 133:814–828, 2005.

[28] M. N. Levy, R. D. Nair, and H. M. Tufo. High-order Galerkin methods for scalable global atmospheric
models. Comput. & Geos., 33:1022–1035, 2007.

[29] V. Cheruvu, R. D. Nair, and H. M. Tufo. A spectral finite volume transport scheme on the cubed-sphere.
Appl. Numer. Math., 57:1021–1032, 2007.

[30] P. Colella, M.R. Dorr, J.A.F. Hittinger, P. McCorquodale, and D. F. Martin. High-order finite-volume
methods on locally-structured grids. Paper, Numerical Modeling of Space Plasma Flows: ASTRONUM-
2008, 2008.

[31] P. Colella, M.R. Dorr, J.A.F. Hittinger, and D.F. Martin. High-order, finite-volume methods in mapped
coordinates. J. Comput. Phys., 230(8):2952 – 2976, 2011.

[32] A. J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Com-
putational Physics, 2:12–26, 1967.

[33] D. S. Balsara and J. Kim. A comparison between divergence-cleaning and staggered-mesh formulations
for numerical magnetohydrodynamics. Astrophys. J., 602:1079–1090, 2004.

[34] K. G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in more than
one dimension). Report 94-24, ICASE, July 1994.

[35] C. R. Evans and J. F. Hawley. Simulation of magnetohydrodynamic flows: A constrained transport
method. Astrophys. J., 332:659, 1988.

[36] H. De Sterck. Multi-dimensional upwind constrained transport on unstructured grids for ’shallow water’

24



magnetohydrodynamics. AIAA, 2001-2623, 2001.
[37] D. S. Balsara. Second-order accurate schemes for magnetohydrodynamics with divergence-free recon-

struction. The Astrophysical Journal Supplement Series, 151:149–184, 2004.
[38] D. S. Balsara. Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohy-

drodynamics. J. Comput. Phys., 228:5040–5056, 2009.
[39] K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw. A solution-adaptive upwind

scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154:284–309, 1999.
[40] P. J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Pub-

lisher, New Mexico, 1998.
[41] R. Sadourny. Conservative finite-difference approximations of the primitive equations on quasi-uniform

spherical grids. Mon. Weather Rev., 100(2):136–144, 1972.
[42] P. A. Ullrich. Atmospheric Modeling with High-Order Finite-Volume Methods. PhD thesis, University

of Michigan, 2011.
[43] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method, volume 1. Butterworth-Heinemann,

fifth edition, 2000.
[44] T. J. Barth. Recent developments in high order k-exact reconstruction on unstructured meshes. Paper

93-0668, AIAA, January 1993.
[45] X. Gao. A Parallel Solution-Adaptive Method for Turbulent Non-Premixed Combusting Flows. PhD

thesis, University of Toronto, 2008.
[46] X. Gao and C. P. T. Groth. A parallel solution-adaptive method for three-dimensional turbulent non-

premixed combusting flows. J. Comput. Phys., 229:3250–3275, 2010.
[47] NASA. CGNS, CFD general notation system. Retrieved from <http://www.grc.nasa.gov/www/cgns/>

(Accessed June 26, 2012).
[48] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation—Foundations and

Applications. North-Holland, New York, 1985.
[49] C. A. Felippa. A compendium of FEM integration formulas for symbolic work. Eng. Comput., 21(8):867–

890, 2004.
[50] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes. The Art of

Scientific Computing 3rd-Edition. Cambridge University Press, New York, 2007.
[51] D. J. Mavriplis. Revisiting the least-squares procedure for gradient reconstruction on unstructured

meshes. Paper 2003-3986, AIAA, June 2003.
[52] C.L. Lawson and R.J. Hanson. Solving least squares problems. Prentice-Hall, INC, 1974.
[53] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state solutions. Paper

93-0880, AIAA, January 1993.
[54] B. van Leer, C. H. Tai, and K. G. Powell. Design of optimally-smoothing multi-stage schemes for the

Euler equations. Paper 89-1933-CP, AIAA, June 1989.
[55] J. S. Sachdev, C. P. T. Groth, and J. J. Gottlieb. A parallel solution-adaptive scheme for predicting

multi-phase core flows in solid propellant rocket motors. Int. J. Comput. Fluid Dyn., 19(2), 2005.
[56] X. Gao and C. P. T. Groth. A parallel adaptive mesh refinement algorithm for predicting turbulent

non-premixed combusting flows. Int. J. Comput. Fluid Dyn., 20(5):349–357, 2006.
[57] W. Gander and W. Gautschi. Adaptive quadrature − revisited. BIT, 40:84–101, 2000.
[58] T. C. Warburton and G. E. Karniadakis. A discontinuous Galerkin method for the viscous MHD

equations. J. Comput. Phys., 152:608–641, 1999.
[59] E. R. Priest. Solar Magneto-Hydrodynamics. Reidel Publishing, Boston, 1982.
[60] H. De Sterck and S. Poedts. Intermediate shocks in three-dimensional magnetohydrodynamic bow-shock

flows with multiple interacting shock fronts. Phys. Rev. Lett., 84(24):5524–5527, 2000.
[61] M. S. Yalim, D. Vanden Abeele, A. Lani, T. Quintino, and H. Deconinck. A finite volume implicit

time integration method for solving the equations of ideal magnetohydrodynamics for the hyperbolic
divergence cleaning method. J. Comput. Phys., 230:6136–6154, 2011.

[62] S. A. Northrup and C. P. T. Groth. Prediction of unsteady laminar flames using a parallel implicit
adaptive mesh refinement algorithm. In Proceedings of the 6th U.S. National Combustion Meeting, May
2009.

[63] S. A. Northrup and C. P. T. Groth. Parallel implicit AMR scheme for unsteady reactive flows. In
Proceedings of the 18th Annual Conference of the CFD Society of Canada, London, Canada, May 2010.

25


	Introduction and Motivation
	GLM Formulation of Ideal MHD Governing Equations
	High-Order CENO Scheme for MHD on Cubed-Sphere Grids
	Multi-Block Cubed-Sphere Grid with Unstructured Root-Block Connectivity
	Semi-Discrete Finite-Volume Formulation
	CENO Reconstruction
	Accurate Integration over General Hexahedral Cells using Trilinear Representations
	K-Exact Least-Squares Reconstruction
	CENO Smoothness Indicator to Enforce Monotonicity

	High-Order Residual Evaluation for General Hexahedral Cells using Trilinear Representations
	Explicit Temporal Discretization Methods
	Parallelization with Uniform Treatment of Sector Boundaries and Corners

	Numerical Results
	Three-Dimensional CENO Reconstructions
	Reconstruction of Smooth Function on Distorted Meshes for a Rectangular Box Domain
	Reconstruction of Radially-Modulated Exponential Function on Cubed-Sphere Grids
	Analysis of Reconstruction Error Distribution on Cubed-Sphere Grids

	High-Order Results for Magnetized Plasma Flows
	Systematic Grid Convergence Studies for a Magnetohydrostatic Test Problem
	Systematic Grid Convergence Studies for a MHD Manufactured Solution on Cubed-Sphere Grids
	Magnetically Dominated MHD Bow Shock


	Conclusion

