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Abstract: In the present paper, preliminary computations for the vortex-airfoil interaction prob-
lem are shown. The Arbitrary Lagrangian-Eulerian formulation of the Euler equations is used to
describe the fluid behaviour. An unsteady adaptive grid strategy is adopted to better capture the
flow features, e.g. shock waves, and to reduce the numerical dissipation of the vortex.
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The computation of the dynamic loads over an airfoil caused by the interaction with external vortices
is a challenging task. Numerical simulations of this kind of flow field are of interest since in rotorcrafts the
blade-vortex interaction (BVI) could be a relevant source of noise and vibration [I]. The BVI phenomenon
occurs when a rotor blade passes within a close proximity of the shed tip vortices from a previous blade.
This causes a rapid, impulsive change in the pressure distribution along the blade resulting in the generation
of highly directional impulsive loading noise. It has been shown that the main parameters governing the
strength of a BVI are the distance between the blade and the vortex, termed miss-distance, the vortex
strength at the time of the interaction, and how parallel or oblique the interaction is [2, B]. The parallel
BVI is the most critical configuration and occurs when the axis of the filament-like vortex is aligned with
the axis of the blade.

Due to the high aspect-ratio of conventional blades a parallel BVI problem can generally be reduced to
a two-dimensional airfoil-vortex interaction (AVI). This approach is ideal to study the underlying physical
mechanisms involved in the interaction as it removes many of the complications of a three-dimensional BVI
simulation and is computationally less expensive. One of the major challenges faced when simulating an
AVTI is to preserve the vortex structure accurately as it convects through the solution and minimize the
numerical dissipation that is inherent in CFD simulations. Suitable techniques must be adopted to avoid
the desctruction of the vortices by the numerical dissipation [4, [5]. This is a well-known issue that arises
when shock-capturing schemes are used to describe phenomena that have a linearly degenerate nature [6].
The work of Oh et al. [5] addressed this problem by the use of adaptive unstructured meshes to simulate a
two-dimensional AVI. This method dynamically concentrates mesh points in region of large flow gradients,
providing high resolution in the region of any vortices and other important flow features. Excellent results
were achieved in this study and a similar approach has been adopted here.

In the present work the arbitrary Lagrangian-Eulerian (ALE) formulation of the Euler equations, in
which the control volumes are allowed to change in shape and position as time evolves, is used to describe
the behavior of the fluid. The governing equations are discretized resorting to a node centered finite-volume
scheme in which the grid velocities are corrected to take into account the grid modifications performed by the
adaptation scheme. [7, [8] The overall scheme allows to compute the solution at the current time level simply
integrating the governing equations, without explicit interpolation of the solution, i.e. in a conservative
manner. Moreover high order time integration schemes, e.g. standard BDF techniques, can be implemented
very easily. [7, [§]

The ALE solver is briefly described in section[Iland the grid alteration strategy is introduced in section 21
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Figure 1: Left: edge associated with the finite volume interface 9C;;, = 9C; N OCj, and metric vector n;;, in
two spatial dimensions. The two shaded regions are the finite volumes C; and Cy; dashed lines indicate the
underlying triangulation. Right: area swept by portion of the interface dC;j . pertaining to element e, made
of nodes 4, j and k, during the time interval [t",¢"T1].

To better study the capabilities of the adaptive flow solver the simulation vortices transport within the flow
field, the free-vortex advection problem is first tackled in section Bl on both fixed and adaptive grids. The
airfoil-vortex interaction problem is presented in section [

1 Edge-Based Solver for Adaptive Grids

The Euler equations in an Arbitrary Lagrangian Eulerian (ALE) framework [9] [10] for compressible two-
dimensional flows read

d
dt c(tl)J " »%(’;C(t)[f(U) —uv]-n=0, VC(t) € Q(t), (1)

where C(t) is a closed subset of the domain Q(¢), 9C(t) is the control volume boundary and n is the outward
unit vector. System () is made complete by specifying suitable initial and boundary conditions [11]. The
flux function is is defined as f(u) = (m, m ® m/p + P(u) 1>, [E* + P(u)] p/m)T and the term uv =
(pv,m @ v, E'v)T accounts for the flux contribution due to the movement of the control volume. p is the
density of mass, m is the linear momentum vector, E® is the total energy per unit volume, P is the local
pressure, v is the interface velocity and I? is the 2 x 2 identity matrix.

The finite volume discrete counterpart of the Euler equation () is obtained by selecting a finite number
of non overlapping volumes C;(t) C £(¢). In the node-centered approach considered here, each cell surrounds
a single node i of the triangulation of Q, as shown in fig. [l Over each finite volume, equation()) reads

d[‘jtui] _ Z /(r)cg(u) _ uv] ‘n _/6 [f(u) — uv} -, (2)

KeKs C; MO0

where u; = u;(t) is the cell average of the unknown vector, V; is the cell size. In equation (2]) the sum is
performed over the finite volumes Cy, that share a portion of their boundary with C;, i.e. 9Ci, = 0C;NACy, # (),
thus the set corresponding set of indexes is K; » = {k € K : k # i|0C; N OC), # 0}, see fig. I The second
term of the right hand side of equation (), i.e. 9C; N IR, is given by the boundary contribution, if any.
Each contribution of equation (2) has to be approximated with a suitable integrated normal numerical flux,
representing the exchange across the cell interface [6]. E.g. a centered approximation of the domain fluxes
gives
fu;) + f(ug) u; + Uk

®(ug, ug, Vikanik) = I S Mk + 9 Vik, (3)
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Figure 2: Interpretation of the edge swapping as continuous finite volume deformation. Left: evaluation of
the normal interface velocity (area of the shaded region) for edge i-k that is deleted due to edge-swapping
from edge i-k at time t" into edge j-k at time ¢"*!. Right: evaluation of the normal interface velocity for
edge j-k that is created due to edge-swapping.

where the integrated normal vector and the integrated normal interface velocity are defined as

nik(t):/Sn and Vl-k(t):/Sv-n. (4)

Cik Cik

Equations (@) (left) and () (right) are consistency conditions that have to be exactly satisfied.
Moreover, by assuming a constant interface flux along the interface, the boundary integral in equation
@) simplifies to
&% (ui, i, &) = —F(ua(u)) - & + up(u;) vi, (5)

where the consistency conditions are

Si(t)z/ n and Vi(t):/ v-n, (6)
8C;NoQ aC;NoN

and up is the value of the solution which satisfies the boundary conditions [12].

In the presented computations the numerical flux function of equation (3) is replaced by a Total Variation
Diminishing (TVD) numerical flux [13] [6]. To this purpose, a flux limiter approach has been followed and
the second order centered approximation is replaced by the first order Roe flux near flow discontinuities [14].
The switch is controlled by the limiter proposed by van Leer [13]. The above high-resolution version of the
scheme requires the definition of an extended edge data structure that includes also the extension nodes ¢*
and k*, that are needed in the evaluation of the limiter function. As done by Ref. [I3], the extension nodes
belong to the two edges best aligned with i-k.

When dealing with moving/deforming meshes in the ALE framework an additional constrain is usually
enforced to prevent spurious oscillations to appear in the solution. Such constrain is expressed as a conser-
vation equation for the cell volumes termed Geometric Conservation Law (GCL) that can be automatically
satisfied if the integrated velocities are computed as the derivatives of the volumes swept by the corresponding
interfaces, i.e.

dVik dVi,a
vinlh) = = T ®

where Vj;, is the volume swept by the interface dC;;, and where V; 5 is the volume swept by the interface
oC; N ON.

and V; (t)
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Figure 3: Top: refinement pattern by node insertion in the center of mass of an existing element for a domain
(top-left) element and boundary (top-right) element. Bottom: Derefinement pattern by node deletion for a
domain (bottom-left) element and boundary (bottom-right) element.

A more general version of equation (2] for adaptive grids is given by

d
E[V; ui] = Z q)(uiuukuyikvnik)+¢6(uiuyi7£i)7
kekq, 4 (t
o Vi € K(1)
ik _ Vi € K (8)
dt ko € Ki(t)
dVio _
dt (28}

where both the number of nodes, K, and the connectivity, K; », may vary during the the computations. The
ODE system above is solved using a Backward Differences Formule (BDF) scheme of order either one or
two, as reported in the numerical results section. At each time level, a dual time-stepping technique is used
to solve the non linear system of equations for the vector unknown at time n + 1 [16].

The numerical scheme outline above is used together with mesh adaptation techniques. The local changes
in grid topology, e.g. edge-swapping and node insertion/deletion, are interpreted as a continuous deformation
of the finite volumes associated to the grid. As an example, in fig. [2] the geometrical interpretation of
edge-swapping in a continuous framework is sketched. The interface velocities given of equation (7)) are
thus computed taking into account the distortion of the finite volumes caused by such modifications. The
solution onto the new, adapted, grid can therefore be computed simply integrating Eq. (8 without any
explicit interpolation step. Additional flux contributions must be taken into account for every removed
edge [8, [17] and additional conservation equations must be integrated for every removed node [7] in order
to ensure the conservativity of the resulting scheme. Such additional fluxes and equations can be dropped
after a given number of time steps depending on the time-integration scheme adopted, e.g. two for a BDF2
and three a BDF3, since their contribution is identically equal to zero. The reader is referred to [8] I8 [7]
for a detailed description of the ALE interpretation of grid adaptation.

2 Grid Alteration Strategy

In the present work, mesh adaptation strategies are used to locally modify the grid spacing so that the
numerical error is evenly distributed within the elements of the computational domain and so that the size
of the element is not greater than a given size distribution which is proportional to the distance from the



boundaries. Mesh adaptation is performed by applying a suitable mixture of global and local techniques:
nodes displacement via elastic analogy, edge swapping, node insertion and removal, as shown in figure [3

Based on the geometry of the grid, an element i is be refined if h; > A(x;), where h; is the size of
the element and A(z) is a known function that prescribed the maximum size of the elements inside the
domain. Since in most cases of aerodynamic interest it is desirable to generate highly refined zones close to
solid bodies, in the present work it has been chosen to impose the dimension of the grid with a linear law,
proportional to the distance from boundaries.

According to the principle of error equidistribution, nodes will be inserted in the regions where the error
is greater than the domain average, or deleted where it is smaller. A triangular element is marked for
refinement if the error is larger than a given threshold, e.g.

% Zu(Ei(M)) +0.10(E;(M)),

where the sum is performed amongst the element nodes, F; is the elemental error,u is the domain average
of the error and o is the standard deviation. Conversely, the grid-coarsening threshold is set equal to
0.98u(E(s)), to force grid adaptation towards a greater uniformity in error distribution. The adopted
elements refinement and nodes removal techniques are shown in fig. Bl

Since the exact value of the error is obviously unknown, the numerical error E has to be locally estimated.
In most applications, error estimators are either functions of gradient or undivided differences [19} 20 21, 22],
or functions of the Hessian matrix H [23], 24, [22] [25] 26] of a convenient sensor variable which is representative
of the flow features and whose choice depends on the physical problem. In the present study, to cope with
the presence of shock waves and smooth-flow regions, the following Mach based nodal estimator is used

B, = 12\ B2, M) + B, M),

with
mTH(M)m n mT'VM 9)
e mIVM 1012 u(M) WP mIVM 1 0.12 u(M)h;’

where h; is longest edge of the i — th element M is the Mach number and m., and m,, are the tangential
and normal components of the linear momentum vector respectively. The discrete Hessian matrix and
the gradient vector are computed using a finite-element approximation within the node-pair representation
[27, 28]. Equation (@) is a modification of the error estimator proposed by Webster [26].

In order to improve the grid quality, standard edge-swapping and grid smoothing techniques are also
adopted [29].

In order to perform unsteady computations with adaptive grids the following predictor-corrector method
is used. At a given time level ¢, a prediction of the solution is computed from the known values of the
solution. The grid adaptation procedure is then carried out, based on the error estimated with computed
prediction. A higher-order solution is then calculated at the time ¢,, ;1 over the new adapted grid.

El(m,M) =

3 Free vortex advection

The case of the advection of a vortex in an horizontal flow is presented. A two dimensional vortex is
represented by the Bagai-Lieshman compressible vortex [30]. The so called n =1 Scully [3T] model is used

for the velocity field, namely
= M. o, 10
o) e 1
where 7 = |z|/r¢, r. is the vortex core radius, M, is a reference value for the vortex core Mach number
and ¢ is the value the speed of sound for 7 that goes to infinity. As it is commonly done in the literature
the vortex core Mach number can be expressed in terms of the vortex intensity I'. and radius r., namely

M.=T./(4r7r;cx0).

Following Bagai and Lieshman [30], the density and pressure field are computed from the radial mo-
mentum component of the compressible Navier-Stokes equations for an isoentropic flow and an ideal gas,




namely

1
. y=1 5\ o Caopos (7)Y
(1) = poo (1 21 T Mc> and P(r) = S ( . ) (11)
where po is the density value far away from the vortex.

The compressible vortex defined above is then inserted in a uniform horizontal flow which is completely
defined by the Mach number M., the density ps, and the momentum modulus m.. Indeed, the non-
dimensional speed of sound of Eq. (I0) is therefore given by coo = M”:"w. In the present work a unit value
has been chosen for both the free-flow density and momentum, thus only the free-flow and vortex Mach
number are used to completely define the flow field.

3.1 Fixed grid computations

The finite-volume scheme is first tested over the compressible vortex advection case. The free flow Mach
number is 0.8, the vortex Mach number is 0.2 and 7. = 0.1 grid units. The lower half of the fixed computa-
tional grid is shown in fig. @ together with the upper half of the density contour lines. The grid dimensions
are 2407, x 1207, and it is made of 61015 nodes and 121722 elements. Non refletion boundary conditions are
imposed on every side of the rectangular domain, where the far field state u. is taken as the exact solution
to the problem, i.e. the rigid displacement of the vortex along the horizontal axis with velocity Moo coo.

To test the time-convergence properties of the scheme unsteady computations have been carried out for
different values of the Courant number and with different time schemes, i.e. BDF scheme of order 1, 2 and 3.
The global Courant number is computed as Co = % hﬁfn’ where h,;, = 0.005 is the smallest edge of the
grid, and ranges between 0.1 and 20. The computations are interrupted when the vortex has been displaced
of 100 core radius, i.e. t = 10.

In fig. [l the final solution obtained adopting different schemes and time-steps is plotted in terms of
tangential component of the velocity computed along the symmetry plane, i.e. y = 0. For values of the
Courant number lower than 1 the numerical error introduced by the time scheme is very small, indeed the
curves obtained with the three schemes are overlapped and difference with respect to the exact solution is
given by the error in space. Increasing the Courant number to 1 highlights the differences between the first
order scheme and the more accurate ones. In the Co = 20 case, shown in fig. the difference between the
exact solution and the numerical one is increased and the behavior of the three schemes differs. The curve
obtained with the first order BDF is strongly smeared but still monotone. The solution obtained with the
second order scheme is less dissipated but shows an error in phase that is not present in the other cases. The
curve computed with the third-order scheme shows a similar delay in phase but, differently form the BDF2
scheme, does not show a monotone behavior. This result is in agreement with the fact that the high-order (in
time) extension of first order TVD scheme does not necessarily share the total variation diminishing property.
Indeed Fernanez [32] showed that in the 1D Sod problem the implicit BDF2-Roe scheme is not monotone for
Co = 5, while Ruuth at al. [33]B84] set a maximum Courant to ensure monotonicity of a BDF2 scheme in the
one-dimensional case at 0.5 times the maximum Courant of the corresponding first-order explicit scheme.

In fig. [6 the iso-vorticity lines at ¢ = 10 are shown for the exact solution, while the one obtained with the
tested numerical schemes are presented in fig. [l The number of contour lines and the spacing is the same
adopted in fig. Bl

For Co = 0.1 the numerical solutions are almost distinguishable amongst each other, while for Co = 1
only the vorticity computed with the first order BDF appear to be smeared and the effects of the entropy
fix are visible, i.e. the different amount of introduced numerical dissipation between the upper and the lower
side of the vortex also causes an error in phase. For Co = 20 the solution obtained with the first order scheme
is almost completely dissipated, while the one obtained with the high-order schemes features an error in both
phase and amplitude. The non-monotone behavior of the scheme that has been shown in fig. is here not
visible due to the close-up view, but it is nonetheless present in the vorticity as well.

Therefore to ensure the monotonicity of the solution the first-order Forward Euler scheme is adopted,
indeed the bound in terms of Courant number is such that the error introduced by the first order and the

high-order schemes is comparable, as shown in fig. and
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Figure 4: Lower half of the fixed mesh and upper half of the initial density contour lines. The size of the

mesh is 2407, x 120 ., with 61015 nodes and 121722 elements. The minimum node spacing is roughly of
0.005 grid units.
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Figure 5: Tangential component of the velocity along the symmetry line as a function of the radial coordinate
at the non-dimensional time ¢ = 10. The vortex displacement is equal to 100 ..
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Figure 6: Contour lines of the magnitude of the vorticity vector of the initial solution.



Figure 7: Contour lines of the magnitude of the vorticity vector obtained at ¢ = 10 with different time-steps
and numerical schemes. The number of contour lines and the scale is the same adopted in fig.



Test Rigid Baeder Baeder
Case Adapted Rigid Adapted 8 order 5 order Kwon
el —1| 058 -0051  -005  +0.032 -0.15  -0.02

Table 1: Variation of the velocity on the edge of the vortex core with respect to the initial value for the
vortex advection problem.

3.2 Adaptive grid computations

As shown in the previous section the artificial dissipation introduced by the scheme is responsible of the
destruction of the vortex core. This can be avoided reducing the time step and the local grid spacing. To
this hand the grid adaptation tools described in section [2] are here applied to the vortex transport problem.

The free-flow Mach number is 0.8, vortex core Mach number is 0.255 and vortex radius is 0.05. The
initial grid and the vorticity field are shown in fig. Bl The grid is 480, x 807, and is made of 33017 nodes
and 65368 elements. Away from the vortex the grid spacing is 0.08, i.e. hiuer = 5.5 x 1072, and around the
vortex core a refined region is created with elements of area 3 x 1073, i.e. Ry, = 0.002. The geometry-driven
adaptation outlined in section ] is used to generate a constant area region inside a circumference of radius
2r, centered on the vortex core. Moreover the element size decreases linearly and at r ~ 4r, the maximum
area is recovered, as shown in fig.

The contour lines for the magnitude of the vorticity vector are shown in fig. Although the prescribed
solution of Eq. () is smooth, the vorticity is slightly non monotone possibly due to the effect of the variable
grid spacing.

Following [5], in the unsteady computations the position of the vortex core z*! is taken as the grid
vertex featuring the minimum /maximum of w within the circle of radius 0.5 7, centered in . Following [35]
to measure how well the initial solution is preserved the variation of the velocity along the vortex radius is
introduced, i.e.

mi(t) Mmoo mi(t)  meo
pi(t) Poo
At a given time the error indicator is thus taken as Awv,(t)/Awv,(0) — 1.

The adaptation procedure is carried out to adapt the solution over a sensor made by the sum of the
magnitude of vorticity and the magnitude of the gradient of p and to satisfy the geometric constraints
sketched above, i.e. the element size decreases linearly with the distance from the vortex core but the
extrema are bounded by the smallest and the largest elements present in the the initial mesh, i.e.

Av, (t) = max min
© pi(t)  poc | €K

€K (t)

A(il?i, t) = (hmam - hmzn)Av (1131', t) + hminu (12)
where
A, (x,t) = %min (max <|m_rﬂ,3> ,0>

is the normalized distance from the core and h,,;, and h,,q. are the minimum and maximum element size
of the domain, respectively.

The computations are carried out with a non-dimensional time step of 5 x 10™*, which correspond to a
Courant number of 0.1, and are interrupted at t = 4, i.e. when the total distance traveled by the vortex
core is 80r,. The final solution and grid are plotted in fig. [@ The overall gird-quality is unsatisfactory and
this is indeed reflected over the iso-vorticity lines of fig. @l which appear to be excessively irregular. Overall
the solution obtained adapting over w and Vp is severely smeared resulting in a 58% error, as shown in
tab. [l This result is unsatisfactory if compared to other adaptive mesh approaches to the vortex advection
problem [l 35].

As shown in fig. [@ the applied adaptive scheme is strongly dissipative. The numerical dissipation intro-
duced by the TVD Roe scheme is proportional to the eigenvalues of the Jacobian matrix, i.e. m/p, ¢ and v,
and to the cell size, i.e. .

The grid velocity terms is both proportional to the fixed-topology grid displacement, i.e. the displacement
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Figure 8: Initial grid and solution vorticity magnitude for the vortex advection problem with adaptive the
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Figure 9: Final grid and solution vorticity magnitude for the vortex advection problem with adaptive the
scheme and no mesh deformation, 40687 nodes and 80623 elements.
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of the refined area around the vortex, and to the correction term to account for the insertion/deletion of
nodes. The latter term depends inversely on the time step [36]. From the governing equations point of view
this means that the more the time step is reduced, and the more frequently the grid is changed, the more
numerical dissipation will be introduced by the scheme.

In the adaptation case of fig. O the grid around core is continuously changing due to the effect of the
vortex displacement and of the solution smearing as well. To overcome such issue a different approach has
been studied that limits the amount of topology modifications performed to move the vortex core. The mesh
deformation algorithm is modified to displace in rigid-like fashion the elements around the vortex core, x,,
and a predictor/corrector-like scheme is set up as follows

1.

5.

First the position of the vertex representing the vortex center point at the new time step is predicted

as
At (m! oz — !
I At ’

~n+1
Zz, =

x, + 5

where m, and p, are the values of momentum and density on the core node, respectively.

The position of the rest of the grid nodes '™ is computed with the mesh deformation scheme based on
the continuum analogy. The elements located in side the vortex core are displaced rigidly of ﬁ:f,“rl -z,

the elements located outside the mesh are deformed with the elastic analogy algorith.

Following the FIAP procedure, the solution at the new time step is predicted and then the position
1 is updated locating the minimum/maximum of the vorticity, as sketched above. In the present
case the application of the mesh regularization technique is not applied inside the vortex core, since it
would a negative impact on the grid spacing, thus on the solution.

The de/refinement scheme outlined in section [2]is carried out based on the corrected position for the
vortex core and the predicted solution the grid. This allows to impose simultaneously the constraints
based on the error equidistribution theory and the geometric ones.

The solution u™*! is updated with the ALE scheme over the adapted grid.

The solution computed with the scheme outlined above are shown in fig. [10(a)l The initial grid quality and
spacing are very well preserved, and the vorticity field is very close to the exact one, indeed, as shown in

11
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Figure 11: Initial adapted grid and solution for a M., = 0.8 flow past a NACA 0012 at zero angle of attack.
Initial grid is made of 50867 nodes and 100595 elements, i.e. Apmin = 6.4 x 107% and hyper = 1.

xy/c -0.6 -0.2 0.2 0.6 1.0 14

Sold — 1] 01333 01084 -0.3791 -0.3857 -0.4621 -0.5097

Table 2: Reduction in vortex intensity measured in terms of tangential velocity across the vortex core.

4 Interaction with a NACA 0012 airfoil

The interaction between a NACA 0012 airfoil and a vortex is here presented. The flow field Mach number is
0.8 and the vortex reference Mach number is 0.259154, which correspond to I' = —0.2, i.e. rotating clockwise.
The airfoil has a unit chord value, i.e. ¢ =1, and the vortex core has a 0.05¢ radius and the initial position
is z,(0) = —5¢ and y,(0) = —0.26¢.

As shown by [37, 38 [5], when the distance between the vortex and the lower side of airfoil is sufficiently
small an increase in the value of the local velocity on the wall is observed, while the flow field on the upper side
is only slightly affected. This causes a pressure wave to be released by the nose of the airfoil, that propagates
upstream, and a aft movement of the shock wave on the lower side due to the increase in streamwise velocity.
When the vortex reaches the trailing edge the shock wave on the lower side moves fore, due to the reduction
of the jump of velocity/pressure, and as the time proceeds the original, steady, state is recovered.

First steady computations are carried out with adopting the FIAP adaptive scheme for the NACA 0012
airfoil test case at zero angle of attack without vortex. The solution features two strong shocks on the upper
and lower side of the airfoil with equal intensity, indeed no shear surface is present.

The FIAP scheme for steady applications is adopted, i.e. without looping over s, to adapt the solution
to the mixed Gradient/Hessian of the Mach number until a 5% convergence is obtained for the relative
variation of 1. The distance-based adaptation of section [2is also carried out imposing that the size of the
elements decreases with the distance from the airfoil and with the distance from the vortex located in x,(0),
i.e. evaluating Eq. (I2) with Ayee = 1 and hyni, = 6.4 x 1072, Therefore the area of the elements located
inside the core is one order of magnitude smaller than the elements located on the boundary of the airfoil.

The obtained grid is shown in fig. which is made of 50867 nodes and 100595 elements. The
simultaneous use of the solution-based and the geometry-based adaptation strategies allows to obtain a grid
that is very well refined near close to the shocks and, on the other hand, is not under refined where the error
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Figure 12: Comparison between the pressure coefficient computed with the adaptive scheme for the Parallel
BVI problem and the Euler [37] and Navier-Stokes [38] reference solutions.

sensor is small. Indeed the grid obtained with the solution-driven scheme only feature very large elements
in the region between the nose of the airfoil and the shock wave, the use of the geometry-driven scheme
avoid such behavior. This “conservative” approach, which limits the grid derefinement, is considered a better
choice when performing unsteady computations during which the mesh undergoes significant modifications.
In fig. the contour lines for the Mach number are shown: the solution is overall symmetric, the shock
wave are very well resolved and no shear wake is present.

To perform unsteady computations where the vortex travels very close to the airfoil, i.e. with very a
small miss-distance, a vortex is “inserted” in the flow field. To this purpose the initial solution is calculated
superimposing the solution obtained with the adaptive steady computations, i.e. the one of fig. 1] and the
solution computed evaluating Eq. (I0) and (II) for the vortex with described above. The FIAP scheme is
then carried out without looping over s, i.e. performing one adaptation procedure per time instant, using
a Forward Euler scheme with a non dimensional time-step of 0.08, corresponding to a maximum Courant
number of 80.

The computational grid is shown in fig. and [T4] together with the pressure contour lines. The grid
around the core follows closely the vortex, that is convected inside the domain and passes at small distance
from the airfoil. The vortex, highlighted as a minimum in the pressure field, looses most of its intensity after
the interaction with the airfoil with a 52% loss in terms of Awv, when the core is located at 1.4¢, i.e. fig.
Fig. and shows that no pressure wave detaches from the leading edge as reported by [5], this
could be caused by a reduction of the vortex intensity, as shown in tab. 2l The fore movement of the shock
wave is also only mildly captured, to this end the reduction of almost 50% of the vortex intensity is a key
factor together with the decrease of mesh quality that is caused by the close interaction of the vortex and
the shock wave shown in fig.

Fig. 02 shows the comparison between the distribution of the pressure coefficient along the airfoil com-
puted with the adaptive scheme and the reference solutions obtained with an Euler solver [37] and a Navier-
Stokes solver [38]. For z, = 0 the curves on the upper side of the airfoil overlap fairly well, while the value of
C)p on the lower side is higher than expected. This is in agreement with the fact that no compression wave
is detached from the nose and could be caused by the reduction of the vortex intensity, as discussed above.
The position of the lower-side shock and its intensity agree with the references. For z, = 0.5¢ the solution
shows a better agreement in terms of pressure coefficient close to the nose, but the predicted aft movement
of the upper shock is significantly underpredicted together with the increase in intensity. As before this is
deemed to be caused by the strong reduction in the vortex intensity shown in tab.
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Figure 13: Computational grid and pressure contour for the parallel BVI NACA 0012 for M, = 0.8,
M, = 0.259154 and Co = 80.
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