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Abstra
t: In the present paper, preliminary 
omputations for the vortex-airfoil intera
tion prob-

lem are shown. The Arbitrary Lagrangian-Eulerian formulation of the Euler equations is used to

des
ribe the �uid behaviour. An unsteady adaptive grid strategy is adopted to better 
apture the

�ow features, e.g. sho
k waves, and to redu
e the numeri
al dissipation of the vortex.
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The 
omputation of the dynami
 loads over an airfoil 
aused by the intera
tion with external vorti
es

is a 
hallenging task. Numeri
al simulations of this kind of �ow �eld are of interest sin
e in rotor
rafts the

blade-vortex intera
tion (BVI) 
ould be a relevant sour
e of noise and vibration [1℄. The BVI phenomenon

o

urs when a rotor blade passes within a 
lose proximity of the shed tip vorti
es from a previous blade.

This 
auses a rapid, impulsive 
hange in the pressure distribution along the blade resulting in the generation

of highly dire
tional impulsive loading noise. It has been shown that the main parameters governing the

strength of a BVI are the distan
e between the blade and the vortex, termed miss-distan
e, the vortex

strength at the time of the intera
tion, and how parallel or oblique the intera
tion is [2, 3℄. The parallel

BVI is the most 
riti
al 
on�guration and o

urs when the axis of the �lament-like vortex is aligned with

the axis of the blade.

Due to the high aspe
t-ratio of 
onventional blades a parallel BVI problem 
an generally be redu
ed to

a two-dimensional airfoil-vortex intera
tion (AVI). This approa
h is ideal to study the underlying physi
al

me
hanisms involved in the intera
tion as it removes many of the 
ompli
ations of a three-dimensional BVI

simulation and is 
omputationally less expensive. One of the major 
hallenges fa
ed when simulating an

AVI is to preserve the vortex stru
ture a

urately as it 
onve
ts through the solution and minimize the

numeri
al dissipation that is inherent in CFD simulations. Suitable te
hniques must be adopted to avoid

the des
tru
tion of the vorti
es by the numeri
al dissipation [4, 5℄. This is a well-known issue that arises

when sho
k-
apturing s
hemes are used to des
ribe phenomena that have a linearly degenerate nature [6℄.

The work of Oh et al. [5℄ addressed this problem by the use of adaptive unstru
tured meshes to simulate a

two-dimensional AVI. This method dynami
ally 
on
entrates mesh points in region of large �ow gradients,

providing high resolution in the region of any vorti
es and other important �ow features. Ex
ellent results

were a
hieved in this study and a similar approa
h has been adopted here.

In the present work the arbitrary Lagrangian-Eulerian (ALE) formulation of the Euler equations, in

whi
h the 
ontrol volumes are allowed to 
hange in shape and position as time evolves, is used to des
ribe

the behavior of the �uid. The governing equations are dis
retized resorting to a node 
entered �nite-volume

s
heme in whi
h the grid velo
ities are 
orre
ted to take into a

ount the grid modi�
ations performed by the

adaptation s
heme. [7, 8℄ The overall s
heme allows to 
ompute the solution at the 
urrent time level simply

integrating the governing equations, without expli
it interpolation of the solution, i.e. in a 
onservative

manner. Moreover high order time integration s
hemes, e.g. standard BDF te
hniques, 
an be implemented

very easily. [7, 8℄

The ALE solver is brie�y des
ribed in se
tion 1 and the grid alteration strategy is introdu
ed in se
tion 2.
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Figure 1: Left: edge asso
iated with the �nite volume interfa
e ∂Cik = ∂Ci ∩ ∂Ck and metri
 ve
tor ηik in

two spatial dimensions. The two shaded regions are the �nite volumes Ci and Ck; dashed lines indi
ate the

underlying triangulation. Right: area swept by portion of the interfa
e ∂Cik,e pertaining to element e, made

of nodes i, j and k, during the time interval [tn, tn+1].

To better study the 
apabilities of the adaptive �ow solver the simulation vorti
es transport within the �ow

�eld, the free-vortex adve
tion problem is �rst ta
kled in se
tion 3 on both �xed and adaptive grids. The

airfoil-vortex intera
tion problem is presented in se
tion 4.

1 Edge-Based Solver for Adaptive Grids

The Euler equations in an Arbitrary Lagrangian Eulerian (ALE) framework [9, 10℄ for 
ompressible two-

dimensional �ows read

d

dt

∫

C(t)

u+

∮

∂C(t)

[

f(u)− u v
]

·n = 0, ∀C(t) ⊆ Ω(t), (1)

where C(t) is a 
losed subset of the domain Ω(t), ∂C(t) is the 
ontrol volume boundary and n is the outward

unit ve
tor. System (1) is made 
omplete by spe
ifying suitable initial and boundary 
onditions [11℄. The

�ux fun
tion is is de�ned as f(u) =
(

m, m ⊗ m/ρ + P (u) I
2,

[

Et + P (u)
]

ρ/m
)

T

and the term u v =
(ρv,m ⊗ v, Etv)T a

ounts for the �ux 
ontribution due to the movement of the 
ontrol volume. ρ is the

density of mass, m is the linear momentum ve
tor, Et

is the total energy per unit volume, P is the lo
al

pressure, v is the interfa
e velo
ity and I
2
is the 2× 2 identity matrix.

The �nite volume dis
rete 
ounterpart of the Euler equation (1) is obtained by sele
ting a �nite number

of non overlapping volumes Ci(t) ⊂ Ω(t). In the node-
entered approa
h 
onsidered here, ea
h 
ell surrounds

a single node i of the triangulation of Ω, as shown in �g. 1. Over ea
h �nite volume, equation(1) reads

d[Vi ui]

dt
= −

∑

k∈Ki,6=

∫

∂Cik

[

f(u)− u v
]

·n−

∫

∂Ci∩∂Ω

[

f(u)− u v
]

·n, (2)

where ui = ui(t) is the 
ell average of the unknown ve
tor, Vi is the 
ell size. In equation (2) the sum is

performed over the �nite volumes Ck that share a portion of their boundary with Ci, i.e. ∂Cik = ∂Ci∩∂Ck 6= ∅,
thus the set 
orresponding set of indexes is Ki, 6= = {k ∈ K : k 6= i|∂Ci ∩ ∂Ck 6= ∅}, see �g. 1. The se
ond

term of the right hand side of equation (2), i.e. ∂Ci ∩ ∂Ω, is given by the boundary 
ontribution, if any.

Ea
h 
ontribution of equation (2) has to be approximated with a suitable integrated normal numeri
al �ux,

representing the ex
hange a
ross the 
ell interfa
e [6℄. E.g. a 
entered approximation of the domain �uxes

gives

Φ(ui, uk, νik,ηik) = −
f(ui) + f(uk)

2
·ηik +

ui + uk

2
νik, (3)
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Figure 2: Interpretation of the edge swapping as 
ontinuous �nite volume deformation. Left: evaluation of

the normal interfa
e velo
ity (area of the shaded region) for edge i-k that is deleted due to edge-swapping

from edge i-k at time tn into edge j-k at time tn+1
. Right: evaluation of the normal interfa
e velo
ity for

edge j-k that is 
reated due to edge-swapping.

where the integrated normal ve
tor and the integrated normal interfa
e velo
ity are de�ned as

ηik(t) =

∫

∂Cik

n and νik(t) =

∫

∂Cik

v ·n. (4)

Equations (4)(left) and (4)(right) are 
onsisten
y 
onditions that have to be exa
tly satis�ed.

Moreover, by assuming a 
onstant interfa
e �ux along the interfa
e, the boundary integral in equation

(2) simpli�es to

Φ
∂(ui, νi, ξi) = −f(u∂(ui)) · ξi + u∂(ui) νi, (5)

where the 
onsisten
y 
onditions are

ξi(t) =

∫

∂Ci∩∂Ω

n and νi(t) =

∫

∂Ci∩∂Ω

v ·n, (6)

and u∂ is the value of the solution whi
h satis�es the boundary 
onditions [12℄.

In the presented 
omputations the numeri
al �ux fun
tion of equation (3) is repla
ed by a Total Variation

Diminishing (TVD) numeri
al �ux [13, 6℄. To this purpose, a �ux limiter approa
h has been followed and

the se
ond order 
entered approximation is repla
ed by the �rst order Roe �ux near �ow dis
ontinuities [14℄.

The swit
h is 
ontrolled by the limiter proposed by van Leer [13℄. The above high-resolution version of the

s
heme requires the de�nition of an extended edge data stru
ture that in
ludes also the extension nodes i⋆

and k⋆, that are needed in the evaluation of the limiter fun
tion. As done by Ref. [15℄, the extension nodes

belong to the two edges best aligned with i-k.
When dealing with moving/deforming meshes in the ALE framework an additional 
onstrain is usually

enfor
ed to prevent spurious os
illations to appear in the solution. Su
h 
onstrain is expressed as a 
onser-

vation equation for the 
ell volumes termed Geometri
 Conservation Law (GCL) that 
an be automati
ally

satis�ed if the integrated velo
ities are 
omputed as the derivatives of the volumes swept by the 
orresponding

interfa
es, i.e.

νik(t) =
dVik

dt
and νi(t) =

dVi,∂

dt
. (7)

where Vik is the volume swept by the interfa
e ∂Cik and where Vi,∂ is the volume swept by the interfa
e

∂Ci ∩ ∂Ω.
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Figure 3: Top: re�nement pattern by node insertion in the 
enter of mass of an existing element for a domain

(top-left) element and boundary (top-right) element. Bottom: Dere�nement pattern by node deletion for a

domain (bottom-left) element and boundary (bottom-right) element.

A more general version of equation (2) for adaptive grids is given by



































d

dt
[Vi ui] =

∑

k∈Ki,6=(t)

Φ(ui, uk, νik,ηik) + Φ
∂(ui, νi, ξi),

dVi,ik

dt
= νik ,

dVi,∂

dt
= νi ,

∀i ∈ K(t)

∀k ∈ Ki, 6=(t)
(8)

where both the number of nodes, K, and the 
onne
tivity, Ki, 6=, may vary during the the 
omputations. The

ODE system above is solved using a Ba
kward Di�eren
es Formulæ (BDF) s
heme of order either one or

two, as reported in the numeri
al results se
tion. At ea
h time level, a dual time-stepping te
hnique is used

to solve the non linear system of equations for the ve
tor unknown at time n+ 1 [16℄.

The numeri
al s
heme outline above is used together with mesh adaptation te
hniques. The lo
al 
hanges

in grid topology, e.g. edge-swapping and node insertion/deletion, are interpreted as a 
ontinuous deformation

of the �nite volumes asso
iated to the grid. As an example, in �g. 2 the geometri
al interpretation of

edge-swapping in a 
ontinuous framework is sket
hed. The interfa
e velo
ities given of equation (7) are

thus 
omputed taking into a

ount the distortion of the �nite volumes 
aused by su
h modi�
ations. The

solution onto the new, adapted, grid 
an therefore be 
omputed simply integrating Eq. (8) without any

expli
it interpolation step. Additional �ux 
ontributions must be taken into a

ount for every removed

edge [8, 17℄ and additional 
onservation equations must be integrated for every removed node [7℄ in order

to ensure the 
onservativity of the resulting s
heme. Su
h additional �uxes and equations 
an be dropped

after a given number of time steps depending on the time-integration s
heme adopted, e.g. two for a BDF2

and three a BDF3, sin
e their 
ontribution is identi
ally equal to zero. The reader is referred to [8, 18, 7℄

for a detailed des
ription of the ALE interpretation of grid adaptation.

2 Grid Alteration Strategy

In the present work, mesh adaptation strategies are used to lo
ally modify the grid spa
ing so that the

numeri
al error is evenly distributed within the elements of the 
omputational domain and so that the size

of the element is not greater than a given size distribution whi
h is proportional to the distan
e from the

4



boundaries. Mesh adaptation is performed by applying a suitable mixture of global and lo
al te
hniques:

nodes displa
ement via elasti
 analogy, edge swapping, node insertion and removal, as shown in �gure 3.

Based on the geometry of the grid, an element i is be re�ned if hi > A(xi), where hi is the size of

the element and A(x) is a known fun
tion that pres
ribed the maximum size of the elements inside the

domain. Sin
e in most 
ases of aerodynami
 interest it is desirable to generate highly re�ned zones 
lose to

solid bodies, in the present work it has been 
hosen to impose the dimension of the grid with a linear law,

proportional to the distan
e from boundaries.

A

ording to the prin
iple of error equidistribution, nodes will be inserted in the regions where the error

is greater than the domain average, or deleted where it is smaller. A triangular element is marked for

re�nement if the error is larger than a given threshold, e.g.

1

3

∑

i

µ(Ei(M)) + 0.1σ(Ei(M)),

where the sum is performed amongst the element nodes, Ei is the elemental error,µ is the domain average

of the error and σ is the standard deviation. Conversely, the grid-
oarsening threshold is set equal to

0.98µ(E(s)), to for
e grid adaptation towards a greater uniformity in error distribution. The adopted

elements re�nement and nodes removal te
hniques are shown in �g. 3.

Sin
e the exa
t value of the error is obviously unknown, the numeri
al error E has to be lo
ally estimated.

In most appli
ations, error estimators are either fun
tions of gradient or undivided di�eren
es [19, 20, 21, 22℄,

or fun
tions of the Hessian matrixH [23, 24, 22, 25, 26℄ of a 
onvenient sensor variable whi
h is representative

of the �ow features and whose 
hoi
e depends on the physi
al problem. In the present study, to 
ope with

the presen
e of sho
k waves and smooth-�ow regions, the following Ma
h based nodal estimator is used

Ei = h2
i

√

E2
i (mτ ,M) + E2

i (mn,M),

with

Ei(m,M) =
mTH(M)m

hi mT∇M + 0.12µ(M)
+

mT

∇M

h3
i m

T∇M + 0.12µ(M)hi

, (9)

where hi is longest edge of the i − th element M is the Ma
h number and mτ and mn are the tangential

and normal 
omponents of the linear momentum ve
tor respe
tively. The dis
rete Hessian matrix and

the gradient ve
tor are 
omputed using a �nite-element approximation within the node-pair representation

[27, 28℄. Equation (9) is a modi�
ation of the error estimator proposed by Webster [26℄.

In order to improve the grid quality, standard edge-swapping and grid smoothing te
hniques are also

adopted [29℄.

In order to perform unsteady 
omputations with adaptive grids the following predi
tor-
orre
tor method

is used. At a given time level tn a predi
tion of the solution is 
omputed from the known values of the

solution. The grid adaptation pro
edure is then 
arried out, based on the error estimated with 
omputed

predi
tion. A higher-order solution is then 
al
ulated at the time tn+1 over the new adapted grid.

3 Free vortex adve
tion

The 
ase of the adve
tion of a vortex in an horizontal �ow is presented. A two dimensional vortex is

represented by the Bagai-Lieshman 
ompressible vortex [30℄. The so 
alled n = 1 S
ully [31℄ model is used

for the velo
ity �eld, namely

mθ(r̂)

ρ(r̂)
=

2 r̂

(1 + r̂2)
Mc c∞, (10)

where r̂ = |x|/rc, rc is the vortex 
ore radius, Mc is a referen
e value for the vortex 
ore Ma
h number

and c∞ is the value the speed of sound for r̂ that goes to in�nity. As it is 
ommonly done in the literature

the vortex 
ore Ma
h number 
an be expressed in terms of the vortex intensity Γc and radius rc, namely

Mc = Γc/(4π rc c∞).
Following Bagai and Lieshman [30℄, the density and pressure �eld are 
omputed from the radial mo-

mentum 
omponent of the 
ompressible Navier-Stokes equations for an isoentropi
 �ow and an ideal gas,

5



namely

ρ(r̂) = ρ∞

(

1− 2
γ − 1

1 + r̂2
M2

c

)
1

γ−1

and P (r̂) =
c2∞ρ∞

γ

(

ρ(r̂)

ρ∞

)γ

(11)

where ρ∞ is the density value far away from the vortex.

The 
ompressible vortex de�ned above is then inserted in a uniform horizontal �ow whi
h is 
ompletely

de�ned by the Ma
h number M∞, the density ρ∞ and the momentum modulus m∞. Indeed, the non-

dimensional speed of sound of Eq. (10) is therefore given by c∞ = m∞

M∞ρ∞
. In the present work a unit value

has been 
hosen for both the free-�ow density and momentum, thus only the free-�ow and vortex Ma
h

number are used to 
ompletely de�ne the �ow �eld.

3.1 Fixed grid 
omputations

The �nite-volume s
heme is �rst tested over the 
ompressible vortex adve
tion 
ase. The free �ow Ma
h

number is 0.8, the vortex Ma
h number is 0.2 and rc = 0.1 grid units. The lower half of the �xed 
omputa-

tional grid is shown in �g. 4 together with the upper half of the density 
ontour lines. The grid dimensions

are 240 rc×120 rc and it is made of 61015 nodes and 121722 elements. Non re�etion boundary 
onditions are

imposed on every side of the re
tangular domain, where the far �eld state u∞ is taken as the exa
t solution

to the problem, i.e. the rigid displa
ement of the vortex along the horizontal axis with velo
ity M∞c∞.

To test the time-
onvergen
e properties of the s
heme unsteady 
omputations have been 
arried out for

di�erent values of the Courant number and with di�erent time s
hemes, i.e. BDF s
heme of order 1, 2 and 3.

The global Courant number is 
omputed as Co = m∞

ρ∞

∆t
hmin

, where hmin = 0.005 is the smallest edge of the

grid, and ranges between 0.1 and 20. The 
omputations are interrupted when the vortex has been displa
ed

of 100 
ore radius, i.e. t = 10.
In �g. 5 the �nal solution obtained adopting di�erent s
hemes and time-steps is plotted in terms of

tangential 
omponent of the velo
ity 
omputed along the symmetry plane, i.e. y = 0. For values of the

Courant number lower than 1 the numeri
al error introdu
ed by the time s
heme is very small, indeed the


urves obtained with the three s
hemes are overlapped and di�eren
e with respe
t to the exa
t solution is

given by the error in spa
e. In
reasing the Courant number to 1 highlights the di�eren
es between the �rst

order s
heme and the more a

urate ones. In the Co = 20 
ase, shown in �g. 5(
), the di�eren
e between the

exa
t solution and the numeri
al one is in
reased and the behavior of the three s
hemes di�ers. The 
urve

obtained with the �rst order BDF is strongly smeared but still monotone. The solution obtained with the

se
ond order s
heme is less dissipated but shows an error in phase that is not present in the other 
ases. The


urve 
omputed with the third-order s
heme shows a similar delay in phase but, di�erently form the BDF2

s
heme, does not show a monotone behavior. This result is in agreement with the fa
t that the high-order (in

time) extension of �rst order TVD s
heme does not ne
essarily share the total variation diminishing property.

Indeed Fernanez [32℄ showed that in the 1D Sod problem the impli
it BDF2-Roe s
heme is not monotone for

Co = 5, while Ruuth at al. [33, 34℄ set a maximum Courant to ensure monotoni
ity of a BDF2 s
heme in the

one-dimensional 
ase at 0.5 times the maximum Courant of the 
orresponding �rst-order expli
it s
heme.

In �g. 6 the iso-vorti
ity lines at t = 10 are shown for the exa
t solution, while the one obtained with the

tested numeri
al s
hemes are presented in �g. 7. The number of 
ontour lines and the spa
ing is the same

adopted in �g. 6.

For Co = 0.1 the numeri
al solutions are almost distinguishable amongst ea
h other, while for Co = 1
only the vorti
ity 
omputed with the �rst order BDF appear to be smeared and the e�e
ts of the entropy

�x are visible, i.e. the di�erent amount of introdu
ed numeri
al dissipation between the upper and the lower

side of the vortex also 
auses an error in phase. For Co = 20 the solution obtained with the �rst order s
heme

is almost 
ompletely dissipated, while the one obtained with the high-order s
hemes features an error in both

phase and amplitude. The non-monotone behavior of the s
heme that has been shown in �g. 5(
) is here not

visible due to the 
lose-up view, but it is nonetheless present in the vorti
ity as well.

Therefore to ensure the monotoni
ity of the solution the �rst-order Forward Euler s
heme is adopted,

indeed the bound in terms of Courant number is su
h that the error introdu
ed by the �rst order and the

high-order s
hemes is 
omparable, as shown in �g. 5(a) and 7(a).
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Test Rigid Baeder Baeder

Case Adapted Rigid Adapted 8

th

order 5

th

order Kwon

∆vv(T )
∆vv(0)

− 1 -0.58 -0.051 -0.05 +0.032 -0.15 -0.02

Table 1: Variation of the velo
ity on the edge of the vortex 
ore with respe
t to the initial value for the

vortex adve
tion problem.

3.2 Adaptive grid 
omputations

As shown in the previous se
tion the arti�
ial dissipation introdu
ed by the s
heme is responsible of the

destru
tion of the vortex 
ore. This 
an be avoided redu
ing the time step and the lo
al grid spa
ing. To

this hand the grid adaptation tools des
ribed in se
tion 2 are here applied to the vortex transport problem.

The free-�ow Ma
h number is 0.8, vortex 
ore Ma
h number is 0.255 and vortex radius is 0.05. The

initial grid and the vorti
ity �eld are shown in �g. 8. The grid is 480 rv × 80 rv and is made of 33017 nodes

and 65368 elements. Away from the vortex the grid spa
ing is 0.08, i.e. hmax = 5.5× 10−2
, and around the

vortex 
ore a re�ned region is 
reated with elements of area 3×10−3
, i.e. hmin = 0.002. The geometry-driven

adaptation outlined in se
tion 2 is used to generate a 
onstant area region inside a 
ir
umferen
e of radius

2rv 
entered on the vortex 
ore. Moreover the element size de
reases linearly and at r ≃ 4rv the maximum

area is re
overed, as shown in �g. 8(d).

The 
ontour lines for the magnitude of the vorti
ity ve
tor are shown in �g. 8(
). Although the pres
ribed

solution of Eq. (10) is smooth, the vorti
ity is slightly non monotone possibly due to the e�e
t of the variable

grid spa
ing.

Following [5℄, in the unsteady 
omputations the position of the vortex 
ore xn+1
v

is taken as the grid

vertex featuring the minimum/maximum of ω within the 
ir
le of radius 0.5 rv 
entered in xn
v
. Following [35℄

to measure how well the initial solution is preserved the variation of the velo
ity along the vortex radius is

introdu
ed, i.e.

∆vv(t) = max
i∈K(t)

∣

∣

∣

∣

mi(t)

ρi(t)
−

m∞

ρ∞

∣

∣

∣

∣

− min
i∈K(t)

∣

∣

∣

∣

mi(t)

ρi(t)
−

m∞

ρ∞

∣

∣

∣

∣

.

At a given time the error indi
ator is thus taken as ∆vv(t)/∆vv(0)− 1.
The adaptation pro
edure is 
arried out to adapt the solution over a sensor made by the sum of the

magnitude of vorti
ity and the magnitude of the gradient of ρ and to satisfy the geometri
 
onstraints

sket
hed above, i.e. the element size de
reases linearly with the distan
e from the vortex 
ore but the

extrema are bounded by the smallest and the largest elements present in the the initial mesh, i.e.

A(xi, t) = (hmax − hmin)Av(xi, t) + hmin, (12)

where

Av(x, t) =
1

3
min

(

max

(

|x− xv(t)|

rv
, 3

)

, 0

)

is the normalized distan
e from the 
ore and hmin and hmax are the minimum and maximum element size

of the domain, respe
tively.

The 
omputations are 
arried out with a non-dimensional time step of 5 × 10−4
, whi
h 
orrespond to a

Courant number of 0.1, and are interrupted at t = 4, i.e. when the total distan
e traveled by the vortex


ore is 80rv. The �nal solution and grid are plotted in �g. 9. The overall gird-quality is unsatisfa
tory and

this is indeed re�e
ted over the iso-vorti
ity lines of �g. 9, whi
h appear to be ex
essively irregular. Overall

the solution obtained adapting over ω and ∇ρ is severely smeared resulting in a 58% error, as shown in

tab. 1. This result is unsatisfa
tory if 
ompared to other adaptive mesh approa
hes to the vortex adve
tion

problem [5, 35℄.

As shown in �g. 9 the applied adaptive s
heme is strongly dissipative. The numeri
al dissipation intro-

du
ed by the TVD Roe s
heme is proportional to the eigenvalues of the Ja
obian matrix, i.e. m/ρ, c and ν,
and to the 
ell size, i.e. η.

The grid velo
ity terms is both proportional to the �xed-topology grid displa
ement, i.e. the displa
ement

9
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Figure 8: Initial grid and solution vorti
ity magnitude for the vortex adve
tion problem with adaptive the

s
heme. Grid made of 33017 nodes and 65368 elements, hmax = 0.08 and hmin = 0.002, with hmax =
5.5× 10−2

and hmin = 1.36× 10−3
.

10



PSfrag repla
ements

BDF1

BDF2

BDF3

Exa
t

PSfrag repla
ements

BDF1

BDF2

BDF3

Exa
t

Figure 9: Final grid and solution vorti
ity magnitude for the vortex adve
tion problem with adaptive the

s
heme and no mesh deformation, 40687 nodes and 80623 elements.

of the re�ned area around the vortex, and to the 
orre
tion term to a

ount for the insertion/deletion of

nodes. The latter term depends inversely on the time step [36℄. From the governing equations point of view

this means that the more the time step is redu
ed, and the more frequently the grid is 
hanged, the more

numeri
al dissipation will be introdu
ed by the s
heme.

In the adaptation 
ase of �g. 9 the grid around 
ore is 
ontinuously 
hanging due to the e�e
t of the

vortex displa
ement and of the solution smearing as well. To over
ome su
h issue a di�erent approa
h has

been studied that limits the amount of topology modi�
ations performed to move the vortex 
ore. The mesh

deformation algorithm is modi�ed to displa
e in rigid-like fashion the elements around the vortex 
ore, xv,

and a predi
tor/
orre
tor-like s
heme is set up as follows

1. First the position of the vertex representing the vortex 
enter point at the new time step is predi
ted

as

x̂
n+1
v

= xn
v
+

∆t

2

(

mn
v

ρn
v

+
xn
v
− xn−1

v

∆t

)

,

where mv and ρv are the values of momentum and density on the 
ore node, respe
tively.

2. The position of the rest of the grid nodes xn+1
i is 
omputed with the mesh deformation s
heme based on

the 
ontinuum analogy. The elements lo
ated in side the vortex 
ore are displa
ed rigidly of x̂
n+1
v

−xn
v
,

the elements lo
ated outside the mesh are deformed with the elasti
 analogy algorith.

3. Following the FIAP pro
edure, the solution at the new time step is predi
ted and then the position

xn+1
v

is updated lo
ating the minimum/maximum of the vorti
ity, as sket
hed above. In the present


ase the appli
ation of the mesh regularization te
hnique is not applied inside the vortex 
ore, sin
e it

would a negative impa
t on the grid spa
ing, thus on the solution.

4. The de/re�nement s
heme outlined in se
tion 2 is 
arried out based on the 
orre
ted position for the

vortex 
ore and the predi
ted solution the grid. This allows to impose simultaneously the 
onstraints

based on the error equidistribution theory and the geometri
 ones.

5. The solution u
n+1

is updated with the ALE s
heme over the adapted grid.

The solution 
omputed with the s
heme outlined above are shown in �g. 10(a). The initial grid quality and

spa
ing are very well preserved, and the vorti
ity �eld is very 
lose to the exa
t one, indeed, as shown in

11
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(b) No-adaptation, 33017 nodes and 65368 elements.

Figure 10: Final grid and solution vorti
ity magnitude for the vortex adve
tion problem with the adaptive

s
heme. (a) Mesh deformation and FIAP adaptation with geometri
 
onstraints on the element dimension.

(b) Mesh deformation and swapping only.

tab. 1 a 5% loss is a
hieved that is 
omparable with the 8-th order s
heme from [35℄. A similar result 
an be

obtained if no nodes are inserted or deleted and the movement is 
arried out only with mesh deformation and

swapping, as shown in �g. 10(b). Indeed, sin
e the grid inside the vortex 
ore is translated almost rigidly,

no 
hanges in topology o

urs inside this region and the vortex is thus translating �together� with a high

quality/resolutions mesh.
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(a) Grid (b) Ma
h

Figure 11: Initial adapted grid and solution for a M∞ = 0.8 �ow past a NACA 0012 at zero angle of atta
k.

Initial grid is made of 50867 nodes and 100595 elements, i.e. hmin = 6.4× 10−4
and hmax = 1.

xv/c -0.6 -0.2 0.2 0.6 1.0 1.4

∆vv(t)
∆vv(0)

− 1 0.1333 -0.1084 -0.3791 -0.3857 -0.4621 -0.5097

Table 2: Redu
tion in vortex intensity measured in terms of tangential velo
ity a
ross the vortex 
ore.

4 Intera
tion with a NACA 0012 airfoil

The intera
tion between a NACA 0012 airfoil and a vortex is here presented. The �ow �eld Ma
h number is

0.8 and the vortex referen
e Ma
h number is 0.259154, whi
h 
orrespond to Γ = −0.2, i.e. rotating 
lo
kwise.
The airfoil has a unit 
hord value, i.e. c = 1, and the vortex 
ore has a 0.05c radius and the initial position

is xv(0) = −5c and yv(0) = −0.26c.
As shown by [37, 38, 5℄, when the distan
e between the vortex and the lower side of airfoil is su�
iently

small an in
rease in the value of the lo
al velo
ity on the wall is observed, while the �ow �eld on the upper side

is only slightly a�e
ted. This 
auses a pressure wave to be released by the nose of the airfoil, that propagates

upstream, and a aft movement of the sho
k wave on the lower side due to the in
rease in streamwise velo
ity.

When the vortex rea
hes the trailing edge the sho
k wave on the lower side moves fore, due to the redu
tion

of the jump of velo
ity/pressure, and as the time pro
eeds the original, steady, state is re
overed.

First steady 
omputations are 
arried out with adopting the FIAP adaptive s
heme for the NACA 0012

airfoil test 
ase at zero angle of atta
k without vortex. The solution features two strong sho
ks on the upper

and lower side of the airfoil with equal intensity, indeed no shear surfa
e is present.

The FIAP s
heme for steady appli
ations is adopted, i.e. without looping over s, to adapt the solution

to the mixed Gradient/Hessian of the Ma
h number until a 5% 
onvergen
e is obtained for the relative

variation of µw. The distan
e-based adaptation of se
tion 2 is also 
arried out imposing that the size of the

elements de
reases with the distan
e from the airfoil and with the distan
e from the vortex lo
ated in xv(0),
i.e. evaluating Eq. (12) with hmax = 1 and hmin = 6.4 × 10−4

. Therefore the area of the elements lo
ated

inside the 
ore is one order of magnitude smaller than the elements lo
ated on the boundary of the airfoil.

The obtained grid is shown in �g. 11(a) whi
h is made of 50867 nodes and 100595 elements. The

simultaneous use of the solution-based and the geometry-based adaptation strategies allows to obtain a grid

that is very well re�ned near 
lose to the sho
ks and, on the other hand, is not under re�ned where the error

13
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Figure 12: Comparison between the pressure 
oe�
ient 
omputed with the adaptive s
heme for the Parallel

BVI problem and the Euler [37℄ and Navier-Stokes [38℄ referen
e solutions.

sensor is small. Indeed the grid obtained with the solution-driven s
heme only feature very large elements

in the region between the nose of the airfoil and the sho
k wave, the use of the geometry-driven s
heme

avoid su
h behavior. This �
onservative� approa
h, whi
h limits the grid dere�nement, is 
onsidered a better


hoi
e when performing unsteady 
omputations during whi
h the mesh undergoes signi�
ant modi�
ations.

In �g. 11(b) the 
ontour lines for the Ma
h number are shown: the solution is overall symmetri
, the sho
k

wave are very well resolved and no shear wake is present.

To perform unsteady 
omputations where the vortex travels very 
lose to the airfoil, i.e. with very a

small miss-distan
e, a vortex is �inserted� in the �ow �eld. To this purpose the initial solution is 
al
ulated

superimposing the solution obtained with the adaptive steady 
omputations, i.e. the one of �g. 11, and the

solution 
omputed evaluating Eq. (10) and (11) for the vortex with des
ribed above. The FIAP s
heme is

then 
arried out without looping over s, i.e. performing one adaptation pro
edure per time instant, using

a Forward Euler s
heme with a non dimensional time-step of 0.08, 
orresponding to a maximum Courant

number of 80.
The 
omputational grid is shown in �g. 13 and 14 together with the pressure 
ontour lines. The grid

around the 
ore follows 
losely the vortex, that is 
onve
ted inside the domain and passes at small distan
e

from the airfoil. The vortex, highlighted as a minimum in the pressure �eld, looses most of its intensity after

the intera
tion with the airfoil with a 52% loss in terms of ∆vv when the 
ore is lo
ated at 1.4c, i.e. �g. 14(
).
Fig. 13(b) and 13(
) shows that no pressure wave deta
hes from the leading edge as reported by [5℄, this


ould be 
aused by a redu
tion of the vortex intensity, as shown in tab. 2. The fore movement of the sho
k

wave is also only mildly 
aptured, to this end the redu
tion of almost 50% of the vortex intensity is a key

fa
tor together with the de
rease of mesh quality that is 
aused by the 
lose intera
tion of the vortex and

the sho
k wave shown in �g. 14(a).

Fig. 12 shows the 
omparison between the distribution of the pressure 
oe�
ient along the airfoil 
om-

puted with the adaptive s
heme and the referen
e solutions obtained with an Euler solver [37℄ and a Navier-

Stokes solver [38℄. For xv = 0 the 
urves on the upper side of the airfoil overlap fairly well, while the value of

Cp on the lower side is higher than expe
ted. This is in agreement with the fa
t that no 
ompression wave

is deta
hed from the nose and 
ould be 
aused by the redu
tion of the vortex intensity, as dis
ussed above.

The position of the lower-side sho
k and its intensity agree with the referen
es. For xv = 0.5c the solution
shows a better agreement in terms of pressure 
oe�
ient 
lose to the nose, but the predi
ted aft movement

of the upper sho
k is signi�
antly underpredi
ted together with the in
rease in intensity. As before this is

deemed to be 
aused by the strong redu
tion in the vortex intensity shown in tab. 2.
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(a) xv/c = −0.6, 48928 nodes and 96500 elements

(b) xv/c = −0.2, 48937 nodes and 96516 elements

(
) xv/c = 0.2, 48375 nodes and 95388 elements

Figure 13: Computational grid and pressure 
ontour for the parallel BVI NACA 0012 for M∞ = 0.8,
Mv = 0.259154 and Co = 80.
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(a) xv/c = 0.6, 48254 nodes and 95145 elements

(b) xv/c = 1, 50565 nodes and 99761 elements

(
) xv/c = 1.4, 50178 nodes and 98987 elements

Figure 14: Computational grid and pressure 
ontour for the parallel BVI NACA 0012 for M∞ = 0.8,
Mv = 0.259154 and Co = 80.
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