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Abstract: The aim of this work is to better understand the impact of the vortical structures
motion to the drag coefficient of a simplified ground vehicle. A theoretical study and numerical
experiments show the strong relationship between the distance of the vortices to the back wall and
the pressure forces. So a way to control the flow is to change the trajectories of the vortices to
accelerate their removal from the wall. Numerical results show that this strategy is indeed very
efficient.
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1 Introduction
In this work, direct numerical simulations of the two-dimensional flow around the square back Ahmed body
[2], corresponding to simplified mono space cars or trucks, are considered. The incompressible Navier-Stokes
system is solved in a computational domain including the square back Ahmed body on top of a road. First
of all, some theoretical results on ideal convective vortex motions are analyzed to explore the best kinematics
necessary to decrease the pressure force on the wall. Then, the evolution of a toy vortex added in a background
stationary flow is carefully studied without or with an active control by a steady jet. This study permits
to better understand the effect of the control procedure on the kinematics of one vortex and the resulting
pressure force. Finally the vortex shedding of the real flow computed around the body is analyzed as we
study the mean trajectory of the top and bottom vortices at the back. The effects of a closed-loop active
control using blowing jets and of a passive control using porous layers [6, 7, 12] are carefully compared to
the analytical model. It appears that the control can improve significantly the trajectories and the removal
speeds of some vortices to reach almost the ideal motion. Consequently the pressure force is reduced and
finally the drag coefficient is decreased.

2 Study and control of a single vortex
With non-viscous hypothesis, the two-dimensional vortex model is based on two theories: the circular vortex
theory [10, 11] and the mirror image vortex theory [9]. The first one considers the vortex as a disk. The
velocity is infinite in the center and decreases when the radius increases. To avoid the infinite velocities on
the wall, the vortex position is considered to be at least as far as a classical viscous radius value ε from the
body. The second theory allows to model the vortex sliding actions to the wall. In fact, the sliding force at
the wall is the amount of the forces generated by the studied vortex and its wall mirror image vortex. Let
us recall here the basis of such an approach and its extension to the force evaluation on the wall.
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Let H be the height of the back wall of the vehicle characterized in its two dimensional representation by the
coordinates set x = 0 and −H/2 ≤ z ≤ H/2, let us consider M(0, z) a point on the back wall and a vortex
whose center is located at point P (x1, z1), x1 > 0. If the vortex is moving, the instantaneous pressure force
Fp(t) induced by the vortex on the wall at time t can be evaluated by:

Fp(t) =
ρ

2

Γ2

π2

∫ + H
2

−H
2

x2
1(t)

(x2
1(t) + (z − z1(t))2)2

dz (1)

where ρ is the density and Γ is the circulation of the vortex. This pressure force depends of course strongly
on the circulation Γ but also on the distance of the vortex. So, a way to reduce this force is to push away
the vortex.
To validate this study a numerical simulation is performed solving the 2D Navier-Stokes equations. The
simulation is performed in the computational domain Ω = (0, 15H) × (0, 5H) with a square-back Ahmed
body located at the distance 5.3 from the entrance section and 0.6 from the road (Figure 1) and whose length
is L = 3.625, by solving the penalized Navier-Stokes equations in velocity and pressure (U, p) (see [1, 5]):

∂tU + (U · ∇)U − 1

Re
∆U +

U

K
+∇p = 0 in ΩT = Ω× (0, T ), (2)

div U = 0 in ΩT , (3)

where K = kΦU
νH is the non dimensional coefficient of permeability of the medium, U is the mean velocity, k

is the intrinsic permeability, ν is the kinematic viscosity and Φ is the porosity of the fluid, Re = UH
ν is the

Reynolds number based on the height of the body. To recover the genuine Navier-Stokes equations we set

Figure 1: Computational domain around the square back Ahmed body.

K = 1016 in the fluid. On the contrary K = 10−8 in the solid body to get a velocity field of the same order
in the solid mimicking a porous body with very low permeability. A constant Dirichlet condition is imposed
upstream and on the road U = (ux, uz) = (1, 0) (corresponding to the speed of the ground vehicle) and a
non reflecting boundary condition on the open frontiers (top and downstream) [4] is used.
The system of equations (2),(3) is solved by a strongly coupled approach for the physical unknowns (U, p).
The time discretization is achieved using a second-order Gear scheme with explicit treatment of the con-
vection term. All the linear terms are treated implicitly and discretized via a second-order centered finite
differences scheme. The CFL condition related to the convection term requires a time step of the order of
magnitude of the space step as U = (1, 0), which is relevant to have a good accuracy of the evolution of
the flow and does not induce too much cpu time. A third-order finite differences upwind scheme is used
for the discretization of the convection terms [8]. The efficiency of the resolution is obtained by a multigrid
procedure using V cycles and a cell-by-cell relaxation smoother. A set of grids is defined starting from the
15× 5 coarse mesh to the finest mesh and the number of grids is determined to get accurate results.

Here, the numerical test involves a vortex behind the back wall moving both from the bottom to the top
along the wall and forward. To control the effect of this vortex on the wall, a constant blowing jet is located
at two thirds of the height. When the vortex arrives in front of the jet it is pushed away as can be seen in the
Figures 2 and 3. The vortex is further and there is no opposite sign vorticity along the wall. Consequently
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the pressure force decreases (Figure 4). It is remarquable to see that the uncontrolled and the controlled
cases for the theoretical computation of the pressure forces Fp (eq (1)) and for the numerical computation
of the forces Fp−comp using the simulated pressure values on the wall have the same evolutions.

(a) uncontrolled case (b) controlled case

Figure 2: Comparison of the vorticity field in the wake of Ahmed body between the uncontrolled and the
controlled cases at simulation time t = 12.

(a) uncontrolled case (b) controlled case

Figure 3: Comparison of the pressure field in the wake of Ahmed body between the uncontrolled and the
controlled cases at simulation time t = 12.

3 Active control of the flow around a simplified ground vehicle
To remove the vortices from the back wall, an active control with blowing jets is used. The first choice is
to take a constant jet of velocity Uj = 0.6U which corresponds to the forcing intensity 8× 10−3 defined by

Cµ =
hj

H

(
Uj

U

)2

where hj is the size of the jet [7]. But, as the effect of the vortices is strongly linked to the
pressure at the wall, an efficient choice for such a control is a closed-loop active control with the velocity of
the blowing jets Uj given by:

Uj =
Ujmax

2
(1− β(psensors − p̄sensors)), (4)

where Ujmax is the maximum blowing velocity (here Ujmax = 1.2U to get the same mean velocity than for
the constant jet), β a normalized coefficient defined in such a way that 0 ≤ Uj ≤ Ujmax (here β = 1.5),
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Figure 4: History of the theoretical pressure force Fp and of the pressure force computed from the numerical
simulation at the back Fp−comp induced by the new vortex between simulation times t = 5 and t = 15.

psensors = min(psensor1, psensor2) the lowest pressure measured by the sensors and p̄sensors the averaged
pressure of both sensors [7], where the sensors location is shown in the Figure 5. The closed-loop active

Figure 5: Location of the actuators and sensors at the back wall of the square back Ahmed body.

control techniques used in this work are composed of a jet blowing from one of the three positions of the
back wall (see Figure 5).
The first study consists in comparing the instantaneous vorticity fields of the reference (uncontrolled) case
to the controlled case with one actuator in the middle of the back wall. This position is chosen in order to
take into account the shedding that generates both up and down vortices. Two simulations are initialized
with the same reference flow in order to observe the evolution of up and down vortical structures. The first
case is without control and the second is with control corresponding to a blowing closed-loop actuator which
better includes the shedding frequencies of the real flow. The Figure 6 shows the time evolution and the
averaged values of the drag coefficients for both cases. After two periods of shedding, the drag coefficient is
considerably reduced (−20%) by the blowing control.
The Figures 7 and 8 represent the instantaneous vorticity fields for eight successive moments. The control
becomes effective after t = 3.0 and up to this time the fields are almost identical. Then, the vortices are
pushed away more quickly in the controlled case as it can be seen at simulation time t = 5.0 for a top vortex
and at time t = 6.0 for a bottom vortex. To better analyze the efficiency of the control, in the Figure 9 the
trajectories of two top and bottom vortices with the same initial position are compared for the uncontrolled
and controlled cases. The letters A − H and a − h correspond to the same times in the trajectories for
both simulations (see Table 1). As the Figure shows, the blowing jet pushes away very quickly the vortical
structures from the back wall whereas in the uncontrolled simulation these vortices move away slowly in the
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near wake of the wall. This effect is more effective on the bottom vortex as it is amplified by the jet under
the body.

In order to get a quantitative estimation of the relationship between the vortex kinematics and the drag
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Figure 6: Evolution and mean value of the drag coefficients for the reference case and the controlled case
with a closed-loop active control at the middle of the wall.

(a) t = 0.1 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0

(e) t = 4.0 (f) t = 5.0 (g) t = 6.0 (h) t = 7.0

Figure 7: Vorticity fields along time for the reference case without control.

Points A B C D E F G H
Time t 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Points a b c d e f g h
Time t 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Table 1: Time-letters correspondences for the instantaneous vortex motion study.

reduction due to the control, an averaged estimation of several vortex motions is necessary. So the mean
trajectories of the top and bottom vortices are studied for uncontrolled and controlled cases. The averaging
procedure is performed for ten successive vortices on both sides of the wall from simulation time t = 3 until
time t = 23. In the Figure 10 the mean uncontrolled trajectories are compared to the mean controlled ones
with a closed-loop actuator at the middle of the back wall. The time-letters correspondences are given in
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(a) t = 0.1 (b) t = 1.0 (c) t = 2.0 (d) t = 3.0

(e) t = 4.0 (f) t = 5.0 (g) t = 6.0 (h) t = 7.0

Figure 8: Vorticity fields along time for the controlled case with a closed-loop active control at the middle
of the wall.
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Figure 9: Comparison of trajectories for the top and bottom vortices without control and with a closed-loop
active control at the middle of the wall.

Table 2, time t = 0 corresponds to the first time a vortex is identified by Weiss criterion [3] in the vicinity
of one corner. This statistical study reveals that the control has less effect on the top vortices removal as
they are naturally driven away by the flow. However, the trajectories of the bottom vortices are drastically
modified as in the reference flow, the bottom vortices are pushed upwards by the flow underneath the body.
In that case, like for the toy vortex study, the vortices are expelled from the body very quickly with the
control.

Points A B C D E F G H
Time t 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Table 2: Time-letters correspondences for the averaged vortex motion study.
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Figure 10: Comparison of averaged trajectories for the cases without control and with a closed-loop active
control at the middle of the wall.

4 Conclusions
In the first part of this paper, it is emphasized that the pressure force on the back wall depends directly
on the circulation and the speed of removal of the vortices. The larger this speed is, the more the pressure
forces decrease and so the drag coefficient. This is confirmed by numerical simulations using a toy vortex.
Then a closed-loop active control is used to reduce the drag coefficient of the square back Ahmed body. It
is confirmed that such an active control is efficient for some vortices according to their trajectory. It is the
case for the shedded vortices coming from the bottom edge of the back wall due to the presence of the road
but there is no noticeable improvement for the vortices coming from the top edge.
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