
1

Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-4205

An Implicit Hermite WENO Reconstruction-Based

Discontinuous Galerkin Method on Tetrahedral Grids

Yidong Xia* and Robert Nourgaliev**

Corresponding author: yxia2@ncsu.edu

* North Carolina State University, Raleigh, NC 27695, USA
** Idaho National Laboratory, Idaho Falls, ID 83415 USA.

Abstract: An Implicit Reconstructed Discontinuous Galerkin method, IRDG(P1P2), is

presented for solving the compressible Euler equations on tetrahedral grids. In this

method, a quadratic polynomial (P2) solution is first reconstructed using a least-squares

method from the underlying linear polynomial (P1) DG solution. By taking advantage

of the derivatives in the DG formulation, the stencils used in the reconstruction involve

only von Neumann neighborhood (adjacent face-neighboring cells) and thus are

compact and consistent with the underlying DG method. The final P2 solution is then

obtained using a WENO reconstruction, which is necessary to ensure stability of the

RDG(P1P2) method. A matrix-free GMRES (generalized minimum residual) algorithm

is presented to solve the approximate system of linear equations arising from Newton

linearization. The LU-SGS (lower-upper symmetric Gauss-Seidel) preconditioner is

applied with both the simplified and approximate Jacobian matrices. The numerical

experiments on a variety of flow problems demonstrate that the developed IRDG(P1P2)

method is able to obtain a speedup of at least two orders of magnitude than its explicit

counterpart, maintain the linear stability, and achieve the designed third order of

accuracy: one order of accuracy higher than the underlying second-order DG(P1)

method without significant increase in computing costs and storage requirements. It is

also found that a well approximated Jacobian matrix is essential for the IRDG method

to achieve fast converging speed and maintain robustness on large-scale problems.

Keywords: Discontinuous Galerkin, Reconstruction Method, WENO, Compressible Flows,

Implicit Method, Tetrahedral Grids.

1 Introduction

The discontinuous Galerkin methods [1-25] combine two advantageous features commonly associated

to finite element and finite volume methods. As in classical finite element methods, accuracy is obtained

by means of high-order polynomial approximation within an element rather than by wide stencils as in the

case of finite volume methods. The physics of wave propagation is, however, accounted for by solving

the Riemann problems that arise from the discontinuous representation of the solution at element

interfaces. In this respect, the methods are therefore similar to finite volume methods. In contrast to the

enormous advances in the theoretical and numerical analysis of the DG methods, the development of a

viable, attractive, competitive, and ultimately superior DG method over the more mature and well-

established second order methods is relatively an untouched area. This is mainly due to the fact that the

DG methods have a number of weaknesses that have yet to be addressed, before they can be robustly used

2

to flow problems of practical interest in a complex configuration environment. In particular, there are

three most challenging and unresolved issues in the DG methods: a) how to efficiently discretize diffusion

terms required for the Navier-Stokes equations, b) how to effectively control spurious oscillations in the

presence of strong discontinuities, and c) how to develop efficient time integration schemes for time

accurate and steady-state solutions. Indeed, compared to the finite element methods and finite volume

methods, the DG methods require solutions of systems of equations with more unknowns for the same

grids. Consequently, these methods have been recognized as expensive in terms of both computational

costs and storage requirements.

Dumbser et al. [18-20] have originally introduced a new family of reconstructed DG (RDG) methods,

termed PnPm schemes, where Pn indicates that a piecewise polynomial of degree of n is used to represent a

DG solution, and Pm represents a reconstructed polynomial solution of degree of m (m ≥ n) that is used to

compute the fluxes. The beauty of PnPm schemes is that they provide a unified formulation for both finite

volume and DG methods, and contain both classical finite volume and standard DG methods as two

special cases of PnPm schemes, and thus allow for a direct efficiency comparison.

Obviously, the construction of an accurate and efficient reconstruction operator is crucial to the

success of the PnPm schemes. In Dumbser's work, this is achieved using a so-called in-cell recovery. The

resultant over-determined system is then solved using a least-squares method that guarantees exact

conservation, not only of the cell averages but also of all higher order moments in the reconstructed cell

itself, such as slopes and curvatures. However, this conservative least-squares recovery approach is

computationally expensive, as it involves both recovery of a polynomial solution of higher order and

least-squares solution of the resulting over-determined system. Furthermore, the recovery might be

problematic for a boundary cell, where the number of the face-neighboring cells might be not enough to

provide the necessary information to recover a polynomial solution of a desired order.

Fortunately, recovery is not the only way to obtain a polynomial solution of higher order from the

underlying discontinuous Galerkin solutions. Rather, reconstruction widely used in the FV methods

provides an alternative, probably a better choice to obtain a higher-order polynomial representation. Luo

et al. develop a reconstructed discontinuous Galerkin method using a Taylor basis [26-28] for the solution

of the compressible Euler and Navier-Stokes equations on arbitrary grids, where a higher order

polynomial solution is reconstructed by use of a strong interpolation, requiring point values and

derivatives to be interpolated on the face-neighboring cells. The resulting over-determined linear system

of equations is then solved in the least-squares sense. This reconstruction scheme only involves the von

Neumann neighborhood, and thus is compact, simple, robust, and flexible. The reconstruction scheme

guarantees exact conservation, not only of the cell averages but also of their slopes due to a judicious

choice of our Taylor basis.

However, the attempt to naturally extend the RDG method to solve 3D Euler equations on tetrahedral

grids is not successful. Like the second order cell-centered finite volume methods, i.e., RDG(P0P1), the

resultant RDG(P1P2) methods are unstable. Although RDG(P0P1) methods are in general stable in 2D and

on Cartesian or structured grids in 3D, they suffer from the so-called linear instability on unstructured

tetrahedral grids, when the reconstruction stencils only involve von Neumann neighborhood, i.e., adjacent

face-neighboring cells [29]. Unfortunately, the RDG(P1P2) method exhibits the same linear instability,

which can be overcome by using extended stencils. However, this is achieved at the expense of

sacrificing the compactness of the underlying DG methods. Furthermore, these linear reconstruction-

based DG methods will suffer from non-physical oscillations in the vicinity of strong discontinuities for

the compressible Euler equations. Alternatively, ENO, WENO, and HWENO can be used to reconstruct a

higher-order polynomial solution, which can not only enhance the order of accuracy of the underlying DG

method but also achieve both linear and non-linear stability. This type of hybrid HWENO+DG schemes

has been developed on 1D and 2D structured grids by Balsara et al. [30], where the HWENO

reconstruction is relatively simple and straightforward.

On the other hand, early efforts in the development of temporal discretization methods for RDG

methods in 3D focused on explicit schemes [26-28]. Usually, explicit temporal discretizations such as

multistage Runge–Kutta schemes are used to drive the solution to steady state. Acceleration techniques

3

such as local time-stepping and implicit residual smoothing have also been combined in this context. In

general, explicit schemes and their boundary conditions are easy to implement, vectorize and parallelize,

and require only limited memory storage. However, for large-scale problems and especially for the

solution of the Navier–Stokes equations, the rate of convergence slows down dramatically, resulting in

inefficient solution techniques. In order to speed up convergence, an implicit temporal discretization for

RDG methods is required.

In general, implicit methods require the solution of a linear system of equations arising from the

linearization of a fully implicit scheme at each time step or iteration. The most widely used methods to

solve a linear system on tetrahedron grids are iterative solution methods and approximate factorization

methods. Significant efforts have been made to develop efficient iterative solution methods. These range

from Gauss–Seidel to Krylov subspace methods that use a wide variety of preconditioners (see, e.g.,

Stoufflet [31], Batina [32], Venkatakrishnan et al. [33], Knight [34], Whitaker [35], Luo et al. [36], and

Barth et al. [37]). The most successful and effective iterative method is to use the Krylov subspace

methods [38] such as GMRES and BICGSTAB with an ILU (incomplete lower–upper) factorization

preconditioner.

The objective of the effort discussed is to develop an Implicit Rconstructed Discontinuous Galerkin

method, IRDG(P1P2), based on a Hermite WENO reconstruction using a Taylor basis [13] for the solution

of the compressible Euler equations on unstructured tetrahedral grids. This HWENO-based IRDG method

is designed not only to reduce the high computing costs of the DGM and improve the converging speed,

but also to avoid spurious oscillations in the vicinity of strong discontinuities, thus effectively overcoming

the two shortcomings of the DG methods and ensuring the stability of the RDG method. A matrix-free

GMRES algorithm with an LU-SGS preconditioner is used to solve a system of linear equations, arising

from an approximate linearization of an implicit temporal discretization at each time step. The developed

IRDG method is used to compute a variety of flow problems on tetrahedral grids to demonstrate its

accuracy, efficiency, and robustness. The remainder of this paper is organized as follows. The governing

equations are listed in Section 2. The underlying RDG method is presented in Section 3. The implicit

algorithm is presented in Section 4. Extensive numerical experiments are reported in Section 5.

Concluding remarks are given in Section 6.

2 Governing Equations

The Euler equations governing unsteady compressible inviscid flows can be expressed as

where the summation convention has been used. The conservative variable vector U, and inviscid flux

vector F are defined by

)

Here ρ, p, and e denote the density, pressure, and specific total energy of the fluid, respectively, and is

the velocity of the flow in the coordinate direction . The pressure can be computed from the equation of

state

which is valid for perfect gas, where is the ratio of the specific heats.

4

3 Reconstructed Discontinuous Galerkin Method

The governing equation (2.1) is discretized using a discontinuous Galerkin finite element formulation.

To formulate the discontinuous Galerkin method, we first introduce the following weak formulation,

which is obtained by multiplying the above conservation law by a test function W, integrating over the

domain Ω, and then performing an integration by parts,

where Γ(=∂Ω) denotes the boundary of Ω, and the unit outward normal vector to the boundary. We

assume that the domain Ω is subdivided into a collection of non-overlapping tetrahedral elements in

3D. We introduce the following broken Sobolev space

which consists of discontinuous vector-values polynomial functions of degree p, and where m is the

dimension of the unknown vector and

where denotes a multi-index and d is the dimension of space. Then, we can obtain the following semi-

discrete form by applying weak formulation on each element , find

 such as

where and represent the finite element approximations to the analytical solution U and the test

function W respectively, and they are approximated by a piecewise polynomial function of degrees p,

which are discontinuous between the cell interfaces. Assume that B is the basis of polynomial function of

degrees p, this is then equivalent to the following system of N equations,

where N is the dimension of the polynomial space. Since the numerical solution is discontinuous

between element interfaces, the interface fluxes are not uniquely defined. The flux function

appearing in the second terms of Eq. (3.5) is replaced by a numerical Riemann flux function

 where
 and

 are the conservative state vector at the left and right side of the element

boundary. This scheme is called discontinuous Galerkin method of degree P, or in short notation DG(P)

method. Note that the DG formulations are very similar to finite volume schemes, especially in their use

of numerical fluxes. Indeed, the classical first-order cell-centered finite volume scheme exactly

corresponds to the DG() method, i.e., to the DG method using a piecewise constant polynomial.

Consequently, the DG() methods with k>0 can be regarded as a natural generalization of finite volume

methods to higher order methods. By simply increasing the degree P of the polynomials, the DG methods

of corresponding higher order are obtained.

In the traditional DG method, numerical polynomial solutions in each element are expressed using

either standard Lagrange finite element or hierarchical node-based basis as following

5

where is the finite element basis function. As a result, the unknowns to be solved are the variables at

the nodes . On each cell, a system of N×N has to be solved, where polynomial solutions are dependent

on the shape of elements. For example, for a linear polynomial approximation in 3D, a linear polynomial

is used for tetrahedral elements and the unknowns to be solved are the variables at the four. However,

numerical polynomial solutions U can be expressed in other forms as well. In the present work, the

numerical polynomial solutions are represented using a Taylor series expansion at the center of the cell.

For example, if we do a Taylor series expansion at the cell centroid, the quadratic polynomial solutions

can be expressed as follows

which can be further expressed as cell-averaged values and their derivatives at the center of the cell

where Ũ is the mean value of U in this cell and the ten basis functions are as below. The unknowns to be

solved in this formulation are the cell-averaged variables and their derivatives at the center of the cells.

The dimension of the polynomial space is ten and the ten basis functions are

The discontinuous Galerkin formulation then leads to the following ten equations

Note that in this formulation, equations for the cell-averaged variables are decoupled from equations for

their derivatives due to the judicial choice of the basis functions and the fact that

6

In the implementation of this DG method, the basis functions are actually normalized in order to improve

the conditioning of the system matrix (3.5) as follows:

where , , and and , ,

 and , , are the maximum and minimum coordinates in the cell in x-, y- and z-

directions, respectively. A quadratic polynomial solution can then be rewritten as

The above normalization is especially important to alleviate the stiffness of the system matrix for higher-

order DG approximations.

This formulation allows us to clearly see the similarities and differences between the DG and FV

methods. In fact, the discretized governing equations for the cell-averaged variables and the assumption

of polynomial solutions on each cell are exactly the same for both methods. The only difference between

them is the way how they obtain high-order (>1) polynomial solutions. In the finite volume methods, the

polynomial solution of degrees p are reconstructed using information from the cell-averaged values of the

flow variables, which can be obtained using either TVD/MUSCL or ENO/WENO reconstruction

schemes. Unfortunately, the multi-dimensional MUSCL approach suffers from two shortcomings in the

context of unstructured grids: 1) Uncertainty and arbitrariness in choosing the stencils and methods to

compute the gradients in the case of linear reconstruction; This explains why a nominally second-order

finite volume scheme is hardly able to deliver a formal solution of the second order accuracy in practice

for unstructured grids. The situation becomes even more evident, severe, and profound, when a highly

stretched tetrahedral grid is used in the boundary layers. Many studies, as reported by many researchers

[39-41] have demonstrated that it is difficult to obtain a second-order accurate flux reconstruction on

highly stretched tetrahedral grids and that for the discretization of inviscid fluxes, the classic 1D-based

upwind schemes using median-dual finite volume approximation suffer from excessive numerical

diffusion due to such skewing. 2) Extended stencils required for the reconstruction of higher-order (>1st)

polynomial solutions. This is exactly the reason why the current finite-volume methods using the

TVD/MUSCL reconstruction are not practical at higher order and have remained second-order on

unstructured grids. When the ENO/WENO reconstruction schemes are used for the construction of a

polynomial of degree p on unstructured grids, the dimension of the polynomial space N=N (p,d) depends

on the degree of the polynomials of the expansion p, and the number of spatial dimensions d. One must

have three, six, and ten cells in 2D and four, ten, and twenty cells in 3D for the construction of a linear,

quadratic, cubic Lagrange polynomial, respectively. Undoubtedly, it is an overwhelmingly challenging, if

not practically impossible, task to judiciously choose a set of admissible and proper stencils that have

such a large number of cells on unstructured grids especially for higher order polynomials and higher

dimensions. This explains why the application of higher-order ENO/WENO methods hardly exists on

unstructured grids, in spite of their tremendous success on structured grids and their superior performance

over the MUSCL/TVD methods. Unlike the FV methods, where the derivatives are reconstructed using

cell average values of the neighboring cells, the DG method computes the derivatives in a manner similar

7

to the mean variables. This is compact, rigorous, and elegant mathematically in contrast with arbitrariness

characterizing the reconstruction schemes with respect how to compute the derivatives and how to choose

the stencils used in the FV methods. It is our believe that this is one of the main reasons why the second

order DG methods are more accurate than the FV methods using either TVD/MUSCL or ENO/WENO

reconstruction schemes and are less dependent on the mesh regularity, which has been demonstrated

numerically [13]. Furthermore, the higher order DG methods can be easily constructed by simply

increasing the degree p of the polynomials locally, in contrast to the finite volume methods which use the

extended stencils to achieve higher order of accuracy.

However, in comparison with reconstructed FV methods, the DG methods have a significant drawback

in that they require more degrees of freedom, an additional domain integration, and more Gauss

quadrature points for the boundary integration, and therefore more computational costs and storage

requirements. On one hand, the reconstruction methods that FV methods use to achieve higher-order

accuracy are relatively inexpensive but less accurate and robust. One the other hand, DG methods that can

be viewed as a different way to extend a FV method to higher orders are accurate and robust but costly. It

is only natural and tempting to combine the efficiency of the reconstruction methods and the accuracy of

the DG methods. This idea was originally introduced by Dumbser et al in the frame of PnPm scheme [18-

20], where Pn indicates that a piecewise polynomial of degree of n is used to represent a DG solution, and

Pm represents a reconstructed polynomial solution of degree of m (m ≥ n) that is used to compute the

fluxes and source terms. The beauty of PnPm schemes is that they provide a unified formulation for both

finite volume and DG methods, and contain both classical finite volume and standard DG methods as two

special cases of PnPm schemes, and thus allow for a direct efficiency comparison. When n=0, i.e. a

piecewise constant polynomial is used to represent a numerical solution, P0Pm is nothing but classical

high order finite volume schemes, where a polynomial solution of degree m (m ≥1) is reconstructed from

a piecewise constant solution. When m=n, the reconstruction reduces to the identity operator, and PnPm

scheme yields a standard DG method. Clearly, an accurate and efficient reconstruction is the key

ingredient in extending the underlying DG method to higher order accuracy. Although our discussion in

this work is mainly focused on the linear DG method, its extension to higher order DG methods is

straightforward. In the case of DG(P1) method, a linear polynomial solution in any cell i is

Using this underlying linear polynomial DG solution in the neighboring cells, one can reconstruct a

quadratic polynomial solution
 as follows:

In order to maintain the compactness of the DG methods, the reconstruction is required to only involve

Von Neumann neighborhood, i.e., the adjacent cells that share a face with the cell i under consideration.

There are ten degrees of freedom, and therefore ten unknowns to be determined. However, the first four

unknowns can be trivially obtained, by requiring that the reconstruction scheme has to be conservative, a

fundamental requirement, and the values of the reconstructed first derivatives are equal to the ones of the

first derivatives of the underlying DG solution at the centroid i. Due to the judicious choice of Taylor

basis in our DG formulation, these four degrees of freedom (cell average and slopes) simply coincide with

the ones from the underlying DG solution, i.e.,

8

The remaining six degrees of freedom can be determined by requiring that the reconstructed solution and

its first derivatives are equal to the underlying DG solution and its first derivatives for all the adjacent

face neighboring cells. Consider a neighboring cell j, one requires

where the basis function B are evaluated at the center of cell j, i.e., B=B(,). Its matrix form can be

written as

where R is used to represent the right-hand-side for simplicity. Similar equations could be written for all

cells connected to the cell i with a common face, which leads to a non-square matrix. The number of face-

neighboring cells for a tetrahedral and hexahedral cell is four and six, respectively. As a result, the size of

the resulting non-square matrix is 16×6 and 24×6, respectively. This over-determined linear system of 16

or 24 equations for 6 unknowns can be solved in the least-squares sense. In the present work, it is solved

using a normal equation approach, which, by pre-multiplying through by matrix transpose, yields a

symmetric linear system of equations 6×6. The linear system of 6×6 can be then trivially solved to obtain

the second derivatives of the reconstructed quadratic polynomial solution.

This linear reconstruction-based RDG(P1P2) method is able to achieve the designed third order of

accuracy and significantly improve the accuracy of the underlying second-order DG method for solving

the 2D compressible Euler equations on arbitrary grids [42-46]. However, when used to solve the 3D

compressible Euler equations on tetrahedral grids, this RDG method suffers from the so-called linear

instability, that is also observed in the second-order cell-centered finite volume methods, i.e., RDG(P0P1)

[29]. This linear instability is attributed to the fact that the reconstruction stencils only involve the von

Neumann neighborhood, i.e., adjacent face-neighboring cells [29]. The linear stability can be achieved

using extended stencils, which will unfortunately sacrifice the compactness of the underlying DG

methods. Also, such a linear reconstruction-based DG method will suffer from non-linear instability,

leading to non-physical oscillations in the vicinity of strong discontinuities for the compressible Euler

equations. Alternatively, ENO, WENO, or HWENO can be used to reconstruct a higher-order polynomial

solution, which can not only enhance the order of accuracy of the underlying DG method but also achieve

both linear and non-linear stability. In the present work, the reconstructed quadratic polynomial based on

the Hermite WENO on cell i are a convex combination of the least-squares reconstructed second

derivatives at the cell itself and its four face-neighboring cells

9

where the weights wk are computed as

where ε is a small positive number used to avoid division by zero, ok the oscillation indicator for the

reconstructed second order polynomials, and γ an integer parameter to control how fast the non-linear

weights decay for non-smooth stencils. The oscillation indicator is defined as

Note that the least-squares reconstructed polynomial at the cell itself serves as the central stencil and the

least-squares reconstructed polynomials on its four face-neighboring cells act as biased stencils in this

WENO reconstruction. This reconstructed quadratic polynomial solution is then used to compute the

domain and boundary integrals of the underlying DG(P1) method in Eq. (3.5). The resulting RDG(P1P2)

method, is expected to have third order of accuracy at a moderate increase of computing costs in

comparison to the underlying DG(P1) method. The extra costs are mainly due to the least-squares

reconstruction, which is relatively cheap in comparison to the evaluation of fluxes, and an extra Gauss

quadrature point, which is required to calculate both domain and boundary integrals. In comparison to

DG(P2), this represents a significant saving in terms of flux evaluations. Furthermore, the number of

degree of freedom is greatly reduced, which leads to a significant reduction in memory requirements, and

from which implicit methods will benefit tremendously. The cost analysis for the RDG(P1P1) (DG(P1)),

RDG(P1P2) and RDG(P2P2) (DG(P2)) is summarized in Table 1, where the memory requirement for

storing only the implicit diagonal matrix is given as well, and which grows quadratically with the order of

the DG methods. The storage requirement for the implicit DG methods is extremely demanding,

especially for higher-order DG methods.

Table 1 Cost analysis for different RDG(PmPn) methods on tetrahedral grids

 RDG(P1P1) RDG(P1P2) RDG(P2P2)

Number of quadrature points for

boundary integrals
3 4 7

Number of quadrature points for

domain integrals
4 5 11

Reconstruction No Yes No

Order of accuracy O(h
2
) O(h

3
) O(h

3
)

Storage for implicit diagonal matrix 400 word per element 400 2500

4 Implicit Time Discretization

The spatially discretized governing equations must be integrated in time to obtain a steady-state

solution. In the previous work [42], the Runge-Kutta time-stepping method was used to compute the time

integration with a slow converging speed. In order to efficiently converge the solution, implicit time

integration methods must be used for the reconstructed discontinuous Galerkin methods. Eq. (3.5) can be

written be a semi-discrete form as

10

where Vi is the mass matrix and of the cell i, and Ri is the right hand side residual and equals zero for a

steady-state solution. Using the Euler implicit time integration, Eq. (4.1) can be further written in discrete

form as

where ∆t is the time increment and ∆U
n

is the difference of conservative variables between time level n

and n+1, i.e.,

Eq. (4.2) can be linearized in time as

Writing the equation for all cells leads to the delta form of the backward Euler scheme

where

Note that as ∆t tends to infinity, the scheme reduces to the standard Newton’s method for solving a

system of nonlinear equations. It’s known that the Newton’s method has a quadratic convergence

property. The term represents symbolically the Jacobian matrix. It involves the linearization of

both inviscid and viscous flux vectors. To obtain the quadratic convergence of Newton’s method, the

linearization of the numerical flux function must be virtually exact. However, explicit formation of the

Jacobian matrix resulting from the exact linearization of the third order numerical flux functions using the

reconstructed unknown variables for inviscid fluxes requires excessive storage and is extremely

expensive. An approximated second-order representation of the numerical fluxes is linearized. In each

cell, the conservative variables are evaluated at every Gauss quadrature point with all 10 degrees of

freedom (including the reconstructed 6 degrees), the same with DG(P2), while the matrix A maintains a

DG(P1) structure ((4 × neqns) × (4 × neqns)), where neqns (=5 in 3D) is the number of the unknown

variables. Although the number of time steps may increase, the memory requirement and cost per time

step is significantly reduced: it takes less CPU time and fewer Gauss quadrature points than implicit

DG(P2) methods to compute the Jacobian matrix, thus reduces computational cost to solve the resulting

linear system.

 The following flux function of Lax-Friedrichs scheme, which was previously used to obtain the left-

hand-side (LHS) Jacobian matrix for the implicit finite volume methods, has showed its high efficiency

for both 2D and 3D compressible flow problems [36].

where

where Vij is the velocity vector and Cij is the speed of sound. The linearization of the flux function yields

11

where represents the Jacobian of the inviscid flux vector. However, the extension of this

simplified flux linearization to either the implicit DG(P1) or implicit RDG(P1P2) methods on tetrahedral

grids suffers from CFL constraints and leads to inefficient converging speed. Therefore the performance

of implicit time integration would be greatly impaired if this version of Jacobian representation is applied.

Alternatively, can be formulated according to the method proposed by Batten et.al [47], in

which the average-state Jacobians with frozen acoustic wave-speed are considered. This method can

guarantee an uncompromised converging speed and the robustness is preserved. The implicit form of the

HLLC flux is then given by

where

where and and

with
 and being the smallest and largest eigenvalues of the Roe matrix [48]. Details

of
 and

 can be found in Reference 47. By doing so, the quadratic convergence of the

Newton’s method can no longer be achieved because of the inexact representation of LHS in Eq. (4.5).

In this study, the linear system at each time step is solved approximately by using a preconditioned

matrix-free GMRES solver. Instead of calculating and storing the full matrix, the matrix-free GMRES

algorithm only requires the result of matrix-vector products, which can be approximated as

where R(U+ ∙∆U) is the residual for the governing equations computed using perturbed state quantities

and is a scalar. The parameter can be computed as proposed by Pernice and Walker [49]

where the parameter is a user-defined input and the choice of this parameter is between round-off and

truncation error. In this study works without problem for all the computations. The GMRES

process requires one flux evaluation per time step and one flux evaluation per inner GMRES iteration.

Since the speed of convergence of an iterative algorithm for a linear system depends on the condition

number of the matrix A, preconditioning is used to alter the spectrum and therefore accelerate the

12

convergence speed of iterative algorithm. The preconditioning technique involves solving an equivalent

preconditioned linear system,

instead of the original system in Eq. (4.5), hoping that is well conditioned. Left preconditioning

involves pre-multiplying the linear system with the inverse of a preconditioning matrix P

The best preconditioning matrix for A would cluster as many eigenvalues as possible at unity. Obviously,

the optimal choice of P is A. Preconditioning will be cost-effective only if the additional computational

work incurred for each sub-iteration, is compensated for by a reduction in the total number of iterations to

convergence. In this way, the total cost of solving the overall nonlinear system is reduced.

Using an edge-based data structure, the matrix A is stored in upper, lower, and diagonal forms, which

can be expressed as

where U, L, and D represent the strict upper matrix, the strict lower matrix, and the diagonal matrix,

respectively. Both upper and lower matrices require a storage of nedge × (ndegr × neqns)
 2

 and the

diagonal matrix needs a storage of nelem × (ndegr × neqns)
 2
, where nedge is the number of faces, ndegr

(= 4 for RDG(P1P2) in 3D) is the number of degree of freedom, and nelem is the number of cells.

Therefore the current scheme for the preconditioner is not completely matrix free. In the present work,

the LU-SGS method is used as a preconditioner [29] , i.e.,

The structure of the restarted preconditioned matrix-free GMRES algorithm is described below to solve

the linear system of equations at each time step.

For l = 1, m Do m restarted iterations

v0 = R - A∆U0 initial residual

r0 := P
-1

v0 preconditioning step

β := || r0||2 initial residual norm

v1 := r0/ β define initial Krylov

For j = 1, k Do inner iterations

yj := (R(U+ ∙∆U)-R(U))/ matrix-vector product

wj = P
-1

 yj preconditioning step

For i = 1, j Do Gram-Schmidt step

hi,j := (wj,vi) …

wj = wj – hi,jvi ...

End Do

hj+1,j := ||wj||2 ...

vj+1 := wj / hj+1,j define Krylov vector

End Do

z := solve least squares

 approximate solution

if exit convergence check

∆U0:= ∆U restart

End Do

The primary storage is dictated by the LU-SGS preconditioner, which requires the upper, lower and

diagonal matrix to be stored for every non-zero element in the global matrix on the left hand side of Eq.

(4.17).When evaluating the matrix-vector product by Eq. (4.15), the linearization of the fluxes requires a

13

storage of nelem × ndegr × neqns. The need for additional storage associated with the GMRES algorithm

is an array of size (k+2)× nelem × (ndegr × neqns), where k is the number of search directions. Since the

preconditioned matrix-free GMRES algorithm is completely separated from the flux computation

procedure, the memory which is used to compute the fluxes can also be shared in the procedure of solving

the linear system.

5 Computational Results

The developed implicit Hermite WENO reconstruction-based discontinuous Galerkin method has been

used to solve a variety of the compressible flow problems on tetrahedral grids. All of the computations are

performed on a Dell Precision T7400 personal workstation computer (2.98 GHz Xeon CPU with

18GBytes memory) using Red Hat 5 Linux operating system. The developed implicit method is used to

compete with the explicit three-stage Runge-Kutta time-stepping method for all test cases in order to

demonstrate its superior efficiency. The average-state HLLC full Jacobians (Full LHS) and diagonal

Jacobians (Diagonal LHS), and Lax-Friedrichs Jacobians (Simplified LHS) are used respectively as the

preconditioning matrix for the implicit method in order to verify the effect of accuracy of approximate

Jacobian matrix on converging speed. All computations are initiated with uniform flows and are carried

out using a CFL number of 1 for the explicit method, and 10 for the implicit method for the first 20 steps.

The setting of CFL number is not considered an emphasis in this paper. A few examples are presented in

this section to demonstrate that the developed IRDG(P1P2) method is able to maintain the linear stability,

achieve the designed third order of accuracy, and significantly improve the accuracy of the underlying

second-order DG(P1) method without significant increase in computing costs and storage requirements.

5.1 A Subsonic Flow through a Channel with a Smooth Bump

This test case is chosen to demonstrate the convergence accuracy and efficiency of the IRDG(P1P2)

methods for internal flows. The problem under consideration is a subsonic flow inside a 3D channel with

a smooth bump on the lower surface. The height, width, and length of the channel are 0.8, 0.8, and 3,

respectively. The shape of the lower wall is defined by the function 0.0625exp(-25x
2
) from x = -1.5 to x =

1.5. The inflow condition is prescribed at a Mach number of 0.5, and an angle of attack of 0
o
. Fig. 1

shows the four successively refined tetrahedral grids used for the grid convergence study. The numbers of

elements, points, and boundary points for the coarse, medium, fine, and finest grids are (889, 254, 171),

(6986, 1555, 691), (55703, 10822, 2711), and (449522, 81567, 10999), respectively. The cell size is

halved between consecutive grids. Numerical solutions to this problem are computed using the

IRDG(P1P1) and IRDG(P1P2) methods on the first three grids to obtain a quantitative measurement of the

order of accuracy and discretization errors. The following L
2
-norm of the entropy production is used as

the error measurement

where the entropy production ε defined as

Note that the entropy production, where the entropy is defined as S = p/ρ
γ
, is a very good criterion to

measure accuracy of the numerical solutions, since the flow under consideration is isentropic. Fig. 2

illustrates the computed velocity contours in the flow field obtained by the RDG(P1P1) and RDG(P1P2)

methods on the fine grid. Table 2 provides the details of the spatial convergence of the RDG methods for

this numerical experiment. Consider the fact that this is a 3D simulation of a 2D problem, and

unstructured tetrahedral grids are not symmetric by nature, thus causing error in the z-direction, the

14

second-order RDG(P1P1) method can be considered to deliver the designed second order of accuracy. As

expected, the RDG(P1P2) method offers a full O(h
p+2

) order of the convergence, adding one order of

accuracy to the underlying IRDG(P1P1) method, thus demonstrate that the IRDG(P1P2) method can

significantly increase the accuracy of the underlying DG method, and therefore greatly decrease its

computing costs.

Figure 1. A sequence of four successively globally refined unstructured meshes used for computing

subsonic flow in a channel with a smooth bump.

Figure 2. Computed velocity contours in the flow field obtained by the IRDG(P1P1) (left) and IRDG(P1P2)

(right) on the fine mesh for a subsonic flow through a channel with a bump on the lower surface at

M∞=0.5.

Table 2 Convergence order of accuracy for RDG(P1P1) and RDG(P1P2) methods

for a subsonic flow through a channel with a bump on the lower surface at M∞=0.5.

Cell size Log(L
2
-error) Order

 IRDG(P1P1) IRDG(P1P2) IRDG(P1P1) IRDG(P1P2)

8X -2.61293 -2.67090

1.89

2.80 4X -3.13334 -3.56436

2X -3.74301 -4.35115

The CFL number for the implicit method is set to be 500 for all grids after the initial time steps. Fig. 3-

5 shows a series of plots of logarithmic density residual versus time steps (left) and CPU time (right) for

the explicit and implicit methods using RDG(P1P2) on different grids. In comparison, even the implicit

method with only the diagonal part of Jacobians is three orders of magnitude faster than its explicit

counterpart, indicating the advantages of using implicit time integration scheme under the context of the

high-order reconstructed discontinuous Galerkin methods.

On the other side, comparison among the different approximated preconditioning matrix verifies that

the converging speed of solution is remarkably affected by how the Jacobians are formulated. On the fine

grid, the HLLC full Jacobian matrix leads in the best converging speed in terms CPU time, whereas the

HLLC diagonal Jacobian matrix is about six times slower, and simplified full Jacobian matrix is two

times slower. It is also found that only the solver with the HLLC full Jacobian matrix maintains stable

convergence with CFL numbers like 10
4
or even larger, although the speedup does not increase obviously.

In contrast, the solver with either of the other two Jacobians suffers instability when CFL number of 10
3
.

In another word, less approximated Jacobians lead to larger condition number, thus lead to more rigorous

CFL constraints. Also see Fig. 6, the solver with HLLC full Jacobians is over three times faster than that

with simplified full Jacobians on the finest grid, indicating the necessity of using well approximated

Jacobians on highly refined grids. In fact, for the traditional finite volume methods in 2D and 3D, it’s

15

common practice to apply simplified Jacobians for implicit time integration without difficulty. In contrast,

for high-order discontinuous Galerkin methods on tetrahedral grids, the efficiency of an implicit solver is

closely linked to how accurately the numerical flux function is linearized.

Figure 3. Logarithmic density residual versus time step (left) and CPU time (right) for RDG(P1P2) on the

coarse mesh for subsonic flow through a channel with a bump on the lower surface M∞=0.5.

Figure 4. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) on the

medium mesh for a subsonic flow through a channel with a bump on the lower surface at M∞=0.5.

Figure 5. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) on the

fine mesh for a subsonic flow through a channel with a bump on the lower surface at M∞=0.5.

16

Figure 6. Logarithmic versus time steps (left) and CPU time (right) for RDG(P1P2) on the finest mesh for

a subsonic flow through a channel with a bump on the lower surface at M∞=0.5.

5.2 A Subsonic Flow past a Sphere

In this test case, a subsonic flow past a sphere at a Mach number of M∞=0.5 is chosen to assess if the

developed IRDG method can achieve a formal order of convergence rate and high converging speed for

external flows. A sequence of the four successively refined tetrahedral grids used in this grid convergence

study is shown in Fig. 7. The numbers of elements, points, and boundary points for the coarse, medium,

fine, and finest grids are (535, 167, 124), (2426, 598, 322), (16467, 3425, 1188), and (124706, 23462,

4538), respectively. The cell size is halved between consecutive meshes. Note that only a quarter of the

configuration is modeled due to the symmetry of the problem, and that the number of elements on a

successively refined mesh is not exactly eight times the coarse mesh's elements due to the nature of

unstructured grid generation.

Figure 7. A series of four successively globally refined tetrahedral meshes for computing subsonic flow

past a sphere at M∞=0.5

The computations are conducted on the first three grids using the IRDG(P1P1) and IRDG(P1P2)

methods to obtain a quantitative measurement of the order of accuracy and discretization errors. As in the

previous case, the entropy production is used as the error measurement. Fig. 8 illustrates the computed

velocity contours in the flow field obtained by the RDG(P1P1) and RDG(P1P2) methods on the fine grid.

One can observe that the RDG(P1P2) solution is much more accurate than the RDG(P1P1) solution on the

same fine grid. Table. 3 provides the details of the spatial convergence of the two IRDG methods for this

numerical experiment. Both the IRDG(P1P1) and IRDG(P1P2) methods achieve higher than expected

convergence rates, being 2.36 and 3.55 respectively, convincingly demonstrating the benefits of using a

higher-order method. The CFL number is set to be 10
3
 for all grids after the initial time steps. Fig. 9-11

shows a series of plots of logarithmic density residual versus time step (left) and CPU time (right) for the

explicit and implicit RDG(P1P2) methods on the four grids. The implicit method is at least four orders of

magnitude faster than its explicit counterpart in this test case, again indicating the superior advantages of

17

using implicit time integration schemes. Among the three preconditioners, The HLLC full Jacobians still

provide the best converging speed. However, the HLLC diagonal Jacobians are two times faster than the

simplified full Jacobians on the fine grid, which is different than in the first test case. Again in this case, it

is found that if a very large CFL number like 10
4
 is used, only the solver with the HLLC full Jacobians is

able to maintain stability, whereas with the other two Jacobians, the solver needs more initial time steps

before a larger CFL number can be safely applied. See Fig. 12, the implicit solver with HLLC Jacobians

is three times faster than that with a simplified form on the finest grid, indicating the better robustness and

performance of using more accurately approximated Jacobians on highly refined grids.

Table 3 Orders of convergence rate for RDG(P1P1) and RDG(P1P2) methods

for subsonic flow past a sphere at M∞=0.5

Cell size Log(L
2
-error) Mean order

 IRDG(P1P1) IRDG(P1P2) IRDG(P1P1) IRDG(P1P2)

8X -1.74887 -1.97797

2.36

3.55 4X -2.30018 -2.88048

2X -2.90949 -3.70373

Figure 8. Computed velocity contours in the flow field obtained by the IRDG(P1P1) method on the fine

grid (left), and IRDG(P1P2) on the fine grid (right) for subsonic flow past a sphere at M∞=0.5.

Figure 9. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) on the

coarse mesh for subsonic flow past a sphere M∞=0.5.

18

Figure 10. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) on

the medium mesh for subsonic flow past a sphere M∞=0.5.

Figure 11. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) on

the fine mesh for subsonic flow past a sphere M∞=0.5.

Figure 12. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) on

the finest mesh for subsonic flow past a sphere M∞=0.5.

5.3 Transonic Flow over the ONERA M6 Wing

A transonic flow over the ONERA M6 wing at a Mach number of M∞=0.699 and an attack angle of

α=3.06° is considered in this example. This case is chosen to demonstrate that the IRDG(P1P2) method is

able to maintain the robustness of the underlying DG methods at the presence of weak discontinuities.

19

The DG method is not only linear stable but also has the ability to obtain a stable solution for weak

discontinuities in spite of the over- and under-shots in the vicinity of shock waves.

The mesh used in this computation consists of 41,440 elements, 8,325 grid points, and 2,575 boundary

points, as shown in Fig. 13. One can observe the coarseness of grids even in the vicinity of the leading

edge.The computed pressure contours obtained by the RDG(P1P2) solution on the wing surface are shown

in Fig. 14. Fig. 15 compares the pressure coefficient distributions at six span-wise locations on the wing

surface between the numerical results and the experimental data. The pressure coefficients are computed

at the two nodes of each triangle that intersect with the cut plane, and plotted by a straight line. This

representation truly reflects the discontinuous nature of the DG solution. Since no limiters and Hermite

WENO-reconstruction are used to eliminate the spurious oscillations for the underlying DG(P1) method,

the over- and under-shoots in the vicinity of the shock waves are clearly visible. Besides, the calculations

show a good agreement with experiment data. This example clearly demonstrates that the IRDG(P1P2) is

able to maintain the linear stability of the underlying DG method.

Figure 13. Left: unstructured mesh used for computing a transonic flow past an ONERA M6 wing

(41,440 elements, 8,325 points, 2,575 boundary points). Right: Details around the leading edge.

Figure 14. Computed pressure contours obtained by the RDG(P1P2) method for transonic flow past an

ONERA M6 wing at M∞=0.699, α=3.06°.

The plots of logarithmic density residual versus time steps and CPU time for RDG(P1P2) methods are

shown in Fig. 16. The implicit solver with HLLC full Jacobians at a CFL number of 10
5
, is more than 30

times faster than its explicit counterpart in terms of CPU time. It is found when the simplified Jacobians

are used, stability will not be maintained if a CFL number of 10
5
 is applied after the same initial steps. As

a result, it needs 2.5 times more time steps and 3.5 times more CPU time for full convergence at a CFL

number of 10
4
 than the implicit solver with HLLC Jacobians, due to the fact that more inner iterations in

the GMRES process are required for each time step.

20

(a) η=0.20 (b) η=0.44

(c) η=0.65 (d) η=0.80

(e) η=0.90 (f) η=0.95

Figure 15. Pressure coefficient distributions for ONERA M6 wing at 6 span-wise locations, M∞=0.699

α=3.06°.

21

Figure 16. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) for

transonic flow past ONERA M6 wing at M∞=0.699, α=3.06°.

5.4 Subsonic Flow over the Wing/Pylon/Finned-Store Configuration

The fourth case is for the subsonic flow over the wing/pylon/finned-store configuration reported in

Ref. [50] at M∞=0.5 and α=3.06°. This test case is conducted to test the performance of the IRDG(P1P2)

method for computing flows over complex geometric configurations. The configuration consists of a

clipped delta wing with a 45° sweep comprised from a constant NACA 64010 symmetric airfoil section.

The wing has a root chord of 15 inches, a semispan of 13 inches, and a taper ratio of 0.134. The pylon is

located at the midspan station and has a cross-section characterized by a flat plate closed at the leading

and trailing edges by a symmetrical ogive shape. The width of the pylon is 0.294 inches. The four fins on

the store are defined by a constant NACA 0008 airfoil section with a leading-edge sweep of 45° and a

truncated tip. The mesh used in the computation is shown in Fig.17(a). It contains 328,370 elements,

62,630 grid points, and 14,325 boundary points. Fig.17(b), 17(c) and 17(d) show the computed pressure

contours from the front side view, on the upper and lower wing surface, respectively. Fig. 18 shows a

comparison for logarithmic density residual versus time steps and CPU time between the explicit and

implicit solvers for RDG(P1P2). Only the implicit solver with HLLC full Jacobians is tested in this case.

The IRDG(P1P2) solver obtains a speedup of more than two orders of magnitude than the explicit solver.

In fact, the explicit solver is already not a practical choice in this case. Furthermore, it is even impossible

for explicit solvers to fully converge the flow at all for some more complex configurations. Therefore the

developed IRDG(P1P2) method has again proved its superior performance and offers the feasibility in

large-scale engineering applications.

22

(a) (b)

(c) (d)

Figure 17. (a) Surface mesh for the wing/pylon/store (328,370 elements, 62,630 points, 14,325 boundary

points). (b) Computed pressure contours from the front side view at M∞=0.5, α=3.06°. (c) Computed

pressure contours on upper surface at M∞=0.5, α=3.06°. (d) Computed pressure contours on lower surface

at M∞=0.5, α=3.06°.

Figure 18. Logarithmic density residual versus time steps (left) and CPU time (right) for RDG(P1P2) for

subsonic flow past wing/pylon/store at M∞=0.5, α=3.06°.

5 Conclusions

An implicit Hermite WENO reconstruction-based discontinuous Galerkin method, IRDG(P1P2), has

been presented to solve the compressible Euler equations on tetrahedral grids. An LU-SGS

preconditioned matrix-free GMRES algorithm has been applied to solve an approximate system of linear

23

equations arising from the Newton linearization. A variety of three-dimensional test cases have been

conducted to demonstrate that this developed IRDG(P1P2) method is able to achieve a speedup of at least

two orders of magnitude faster than its explicit counterpart, provided that a well approximated Jacobian

matirx is necessarily implemented as the preconditioning matrix. The numerical experiments also indicate

that this IRDG(P1P2) method can maintain linear stability in smooth flow and nonlinear stability at the

presence of weak discontinuities, deliver the desired third order of accuracy: an order of accuracy higher

than that of the underlying DG(P1) method, without significant increase in computing cost and memory

requirements. The current development is focused on the extension of the IRDG method on tetrahedral

grids for all speeds.

Acknowledgements

This manuscript has been authored by Battelle Energy Alliance, LLC under contract No. DE-AC07-

05ID14517 (INL/CON-09-16255) with the U.S. Department of Energy. The United States Government

retains and the published, by accepting the article for publication, acknowledges that the United States

Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the

published form of this manuscript, or allow others to do so, for United States Government purposes. The

authors would like to acknowledge the partial support for this work provided by DOE under Nuclear

Engineering University Program.

Reference

[1] Reed, W.H. Reed and T.R. Hill.Triangular Mesh Methods for the Neutron Transport Equation. Los

Alamos Scientific Laboratory Report, LA-UR-73-479, 1973.

[2] B. Cockburn, S. Hou, and C. W. Shu. TVD Runge-Kutta Local Projection Discontinuous Galerkin

Finite Element Method for conservation laws IV: the Multidimensional Case. Math. Comput., Vol.

55, pp. 545-581, 1990.

[3] B. Cockburn, and C. W. Shu. The Runge-Kutta Discontinuous Galerkin Method for conservation

laws V: Multidimensional System. J. Comput. Phys., Vol. 141, pp. 199-224, 1998.

[4] B. Cockburn, G. Karniadakis, and C. W. Shu. The Development of Discontinuous Galerkin Method,

in Discontinuous Galerkin Methods, Theory, Computation, and Applications, edited by B.

Cockburn, G.E. Karniadakis, and C. W. Shu, Lecture Notes in Computational Science and

Engineering, Springer-Verlag, New York, 2000, Vol. 11 pp. 5-50, 2000.

[5] F. Bassi and S. Rebay, High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler

Equations. J. Comput. Phys., Vol. 138, pp. 251-285, 1997.

[6] H. L. Atkins and C. W. Shu. Quadrature Free Implementation of Discontinuous Galerkin Method

for Hyperbolic Equations. AIAA J., Vol. 36, No. 5, 1998.

[7] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the Compressible Navier-Stokes

Equations, Discontinuous Galerkin Methods, Theory, Computation, and Applications, edited by B.

Cockburn, G.E. Karniadakis, and C. W. Shu, Lecture Notes in Computational Science and

Engineering, Springer-Verlag, New York, 2000, Vol. 11 pp. 197-208, 2000.

[8] T. C. Warburton, and G. E. Karniadakis. A Discontinuous Galerkin Method for the Viscous MHD

Equations. J. Comput. Phys., Vol. 152, pp. 608-641, 1999.

[9] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis,

and Applications. Texts in Applied Mathematics, Vol. 56, 2008.

[10] P. Rasetarinera and M. Y. Hussaini. An Efficient Implicit Discontinuous Spectral Galerkin

Method. J. Comput. Phys., Vol. 172, pp. 718-738, 2001.

[11] B. T. Helenbrook, D. Mavriplis, and H. L. Atkins. Analysis of p-Multigrid for Continuous and

Discontinuous Finite Element Discretizations. AIAA Paper, 2003-3989, 2003.

 24

[12] K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal. p-Multigrid solution of high-order

discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput.

Phys., Vol. 207, No. 1, pp. 92-113, 2005.

[13] H. Luo, J. D. Baum, and R. Löhner. A Discontinuous Galerkin Method Using Taylor Basis

for Compressible Flows on Arbitrary Grids. J. Comput. Phys., Vol. 227, No 20, pp. 8875-8893,

October 2008.

[14] H. Luo, J.D. Baum, and R. Löhner. On the Computation of Steady-State Compressible Flows

Using a Discontinuous Galerkin Method. Int. J. Numer. Meth. Eng, Vol. 73, No. 5, pp. 597-623,

2008.

[15] H. Luo, J. D. Baum, and R. Löhner. A Hermite WENO-based Limiter for Discontinuous

Galerkin Method on Unstructured Grids. J. Comput. Phys., Vol. 225, No. 1, pp. 686-713, 2007.

[16] H. Luo, J.D. Baum, and R. Löhner. A p-Multigrid Discontinuous Galerkin Method for the

Euler Equations on Unstructured Grids. J. Comput. Phys., Vol. 211, No. 2, pp. 767-783, 2006.

[17] H. Luo, J.D. Baum, and R. Löhner. A Fast, p-Multigrid Discontinuous Galerkin Method for

Compressible Flows at All Speed. AIAA J., Vol. 46, No. 3, pp.635-652, 2008.

[18] M. Dumbser, D.S. Balsara, E.F. Toro, C.D. Munz. A unified framework for the construction

of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J.

Comput. Phys., 227:8209-8253, 2008.

[19] M. Dumbser, O. Zanotti. Very high order PNPM schemes on unstructured meshes for the

resistive relativistic MHD equations. J. Comput. Phys., 228:6991-7006, 2009.

[20] M. Dumbser. Arbitrary High Order PNPM Schemes on Unstructured Meshes for the

Compressible Navier-Stokes Equations. J. Computers & Fluids, 39: 60-76. 2010.

[21] F. Bassi and S. Rebay. A High-Order Accurate Discontinuous Finite Element Method for the

Numerical Solution of the Compressible Navier-Stokes Equations. J. Comput. Phys., Vol. 131,

pp. 267-279, 1997.

[22] F. Bassi and S. Rebay. Discontinuous Galerkin Solution of the Reynolds-Averaged Navier-

Stokes and k-ω Turbulence Model Equations. J. Comput. Phys., Vol. 34, pp. 507-540, 2005.

[23] B. Cockburn and C.W. Shu. The Local Discontinuous Galerkin Method for Time-dependent

Convection-Diffusion System. SIAM, Journal of Numerical Analysis, Vo. 16, 2001.

[24] C. E. Baumann and J. T. Oden. A Discontinuous hp Finite Element Method for the Euler and

Navier-Stokes Equations. Int. J. Numer. Meth. Fl., Vol. 31, 1999.

[25] J. Peraire and P. O. Persson. The Compact Discontinuous Galerkin Method for Elliptic

Problems. SIAM Journal on Scientific Computing, 30: 1806-1824, 2008.

[26] H. Luo, L. Luo, R. Nourgaliev, and V. Mousseau. A Reconstructed Discontinuous Galerkin

Method for the Compressible Euler Equations on Arbitrary Grids. AIAA-2009-3788, 2009.

[27] H. Luo, L. Luo, R. Nourgaliev, Mousseau, A, and N. Dinh. A Reconstructed Discontinuous

Galerkin Method for the Compressible Navier-STokes Equations on Arbitrary Grids. J. Comput.

Phys., Vol. 229, pp. 6961-6978, 2010.

[28] H. Luo, Luo, L., Ali, A., Norgaliev, R., and i, C. A Parallel, Reconstructed Discontinuous

Galerkin Method for the Compressible Flows on Arbitrary Grids. Commun. Comput. Phys., Vo.

9, No.2, pp. 363-389, 2011.

[29] D. F. Haider, J.P. Croisille, and B. Courbet. Stability Analysis of the Cell Centered Finite-

Volume MUSCL Method on Unstructured Grids. Numirische Mathematik, Vol. 113, No. 4 pp.

555-600, 2009.

[30] D. Balsara, C. Altmann, C.D. Munz and M. Dumbser. A sub-cell based indicator for troubled

zones in RKDG schemes and a novel class of hybrid RKDG + HWENO schemes. J. Comput.

Phys., Vol. 226, pp. 586–620, 2007.

[31] B. Stoufflet. Implicit finite element methods for the Euler equations, in Numerical Methods

for the Euler Equations of Fluid Dynamics, edited by F. Angrand. SIAM, Philadelphia, 1985.

[32] J. T. Batina. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving

unstructured dynamic meshes. AIAA J., 29(11), 1991.

[33] V. Venkatakrishnan and D. J. Mavriplis. Implicit solvers for unstructured meshes. J. Comput.

Phys., 105(83), 1993.

 25

[34] D. D. Knight. A fully implicit Navier-Stokes Algorithm using an unstructured grid and flux

difference splitting. AIAA Paper, 93-0875, 1993.

[35] D. L. Whitaker. Three-dimensional unstructured grid Euler computations using a fully-

implicit, upwind method. AIAA Paper, 93-3337, 1993.

[36] H. Luo, J. D. Baum, and R. Löhner. A Fast, Matrix-free Implicit Method for compressible

flows on Unstructured Grids. J. Comput. Phys., Vol. 146, No. 2, pp. 664-690, 1998.

[37] T.J. Barth and S. W. Linton, “An unstructured mesh Newton solver for compressible fluid

flow and its parallel implementation. AIAA Paper, 95-0221, 1995

[38] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7(3), 89, 1998.

[39] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified Analysis of Discontinuous

Galerkin Methods for Elliptic Problems. SIAM Journal on Numerical Analysis. Vol. 39, No. 5.,

pp. 1749-1779, 2002.

[40] G. Gassner, F. Lorcher, and C. D. Munz. A Contribution to the Construction of Diffusion

Fluxes for Finite Volume and Discontinuous Galerkin Schemes. J. Comput. Phys., Vol. 224, No.

2, pp. 1049-1063, 2007.

[41] H. Liu and K. Xu. A Runge-Kutta Discontinuous Galerkin Method for Viscous Flow

Equations. J. Comput. Phys., Vol. 224, No. 2, pp. 1223-1242, 2007.

[42] H. Luo and Y. Xia. A Class of Reconstructed Discontinuous Galerkin Methods in

Computational Fluid Dynamics. International Conference on Mathematics and Computational

Methods Applied to Nuclear Science and Engineering, Brazil, May, 2011.

[43] H. Luo, L. Luo, R. Nourgaliev, and V. Mousseau. A Reconstructed Discontinuous Galerkin

Method for the Compressible Navier-Stokes Equations on Arbitrary Grids, AIAA-2010-0364,

2010.

[44] H. Luo, L. Luo, R. Norgaliev, V.A. Mousseau, and N. Dinh. A Reconstructed Discontinuous

Galerkin Method for the Compressible Navier-Stokes Equations on Arbitrary Grids. J. Comput.

Phys., Vol. 229, pp. 6961-6978, 2010.

[45] H. Luo, L. Luo, A. Ali, R. Norgaliev, and C. Cai. A Parallel, Reconstructed Discontinuous

Galerkin Method for the Compressible Flows on Arbitrary Grids. Commun. Comput. Phys., Vo.

9, No. 2, pp. 363-389, 2011.

[46] Zhang L.P, Liu W., He L.X., Deng, X.G., Zhang H.X. A Class of Hybrid DG/FV Methods for

Conservation Laws II: Two dimensional Cases, doi:10.1016/j.jcp.2011.03.032. J. Comput.

Phys., 2011.

[47] P. Batten, M. A. Leschziner, and U.C. Goldberg. Average-State Jacobians and Implicit

Methods for Compressible Viscous and Turbulent Flows. J. Comput. Phys., Vol. 137, pp. 38-78,

1997.

[48] P. L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. J.

Comput. Phys., Vol. 43, Issue 2, pp 357-372, 1981.

[49] M. Pernice, HF. Walker. NITSOL: a Newton iterative solver for nonlinear systems. SIAM J

Sci Stat Comput, 19:302-18, 1998.

[50] E. R. IIleim. CFD wing/pylon/finned store mutual interference wind tunnel experiment.

AEDC-TSR-91-P4, Arnold Engineering Development Center, Arnold AFB, TN, Jan. 1991.

